Poe Dator
dilbert img
239f32e
raw
history blame
3.16 kB
import streamlit as st
import torch
from torch import nn
from transformers import BertModel, AutoTokenizer, AutoModel, pipeline
from time import time
import matplotlib.pyplot as plt
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = 'cpu'
from PIL import Image
# dict for decoding / enclding labels
labels = {'cs.NE': 0, 'cs.CL': 1, 'cs.AI': 2, 'stat.ML': 3, 'cs.CV': 4, 'cs.LG': 5}
labels_decoder = {'cs.NE': 'Neural and Evolutionary Computing', 'cs.CL': 'Computation and Language', 'cs.AI': 'Artificial Intelligence',
'stat.ML': 'Machine Learning (stat)', 'cs.CV': 'Computer Vision', 'cs.LG': 'Machine Learning'}
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
class BertClassifier(nn.Module):
def __init__(self, n_classes, dropout=0.5, model_name='bert-base-uncased'):
super(BertClassifier, self).__init__()
self.bert = BertModel.from_pretrained(model_name)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(768, n_classes)
self.relu = nn.ReLU()
def forward(self, input_id, mask):
_, pooled_output = self.bert(input_ids=input_id, attention_mask=mask,return_dict=False)
dropout_output = self.dropout(pooled_output)
linear_output = self.linear(dropout_output)
final_layer = self.relu(linear_output)
return final_layer
@st.cache(suppress_st_warning=True)
def build_model():
model = BertClassifier(n_classes=len(labels))
st.markdown("Model created")
model.load_state_dict(torch.load('model_weights_1.pt', map_location=torch.device('cpu')))
model.eval()
st.markdown("Model weights loaded")
return model
def inference(txt, mode=None):
# infers classes for text topic based on the trained model from above
# has separate mode 'print' for just output
t2 = tokenizer(txt.lower().replace('\n', ''),
padding='max_length', max_length = 512, truncation=True,
return_tensors="pt")
inp2 = t2['input_ids'].to(device)
mask2 = t2['attention_mask'].unsqueeze(0).to(device)
out = model(inp2, mask2)
out = out.cpu().detach().numpy().reshape(-1)
out = out/out.sum() * 100
res = [(l, o) for l, o in zip (list(labels.keys()), out.tolist())]
return res
model = build_model()
st.markdown("###Predict topic by abstract.")
image = Image.open('dilbert_big_data.jpg')
st.image(image)
# st.markdown("<img width=200px src='https://i.pinimg.com/736x/11/33/19/113319f0ffe91f4bb0f468914b9916da.jpg'>", unsafe_allow_html=True)
text = st.text_area("ENTER TEXT HERE")
start_time = time()
res = inference(text, mode=None)
res.sort(key = lambda x : - x[1])
st.markdown("INFERENCE RESULT")
for lbl, score in res:
if score >=1:
st.markdown(f"[ {lbl:<7}] {labels_decoder[lbl]:<35} {score:.1f}%")
res_plot = []
total=0
for r in res:
if total < 95:
res_plot.append(r)
total += r[1]
else:
break
fig, ax = plt.subplots(figsize=(10, len(res_plot)+1))
for r in res_plot :
ax.barh(r[0], r[1])
st.pyplot(fig)
st.markdown(f"cycle time = {time() - start_time:.2f} s.")