Spaces:
Build error
Build error
feat: ShapeClassifier
Browse files- .gitignore +165 -0
- Makefile +2 -0
- main.py +5 -0
- requirements.txt +64 -0
- src/__init__.py +0 -0
- src/configs/__init__.py +17 -0
- src/configs/model_config.py +10 -0
- src/data/__init__.py +17 -0
- src/data/data_loader.py +21 -0
- src/data/dataset.py +35 -0
- src/data/transform.py +7 -0
- src/models/model.py +17 -0
- src/train.py +51 -0
- web.py +50 -0
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
|
163 |
+
# ignore dataset but not the folder
|
164 |
+
data/raw/*
|
165 |
+
data/processed/*
|
Makefile
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
package:
|
2 |
+
pip freeze > requirements.txt
|
main.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.train import train
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
train()
|
5 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.1.1
|
3 |
+
annotated-types==0.5.0
|
4 |
+
anyio==3.7.1
|
5 |
+
attrs==23.1.0
|
6 |
+
certifi==2022.12.7
|
7 |
+
charset-normalizer==2.1.1
|
8 |
+
click==8.1.7
|
9 |
+
colorama==0.4.6
|
10 |
+
contourpy==1.1.1
|
11 |
+
cycler==0.12.0
|
12 |
+
exceptiongroup==1.1.3
|
13 |
+
fastapi==0.103.2
|
14 |
+
ffmpy==0.3.1
|
15 |
+
filelock==3.9.0
|
16 |
+
fonttools==4.43.0
|
17 |
+
fsspec==2023.9.2
|
18 |
+
gradio==3.45.2
|
19 |
+
gradio_client==0.5.3
|
20 |
+
h11==0.14.0
|
21 |
+
httpcore==0.18.0
|
22 |
+
httpx==0.25.0
|
23 |
+
huggingface-hub==0.17.3
|
24 |
+
idna==3.4
|
25 |
+
importlib-resources==6.1.0
|
26 |
+
Jinja2==3.1.2
|
27 |
+
jsonschema==4.19.1
|
28 |
+
jsonschema-specifications==2023.7.1
|
29 |
+
kiwisolver==1.4.5
|
30 |
+
MarkupSafe==2.1.2
|
31 |
+
matplotlib==3.8.0
|
32 |
+
mpmath==1.3.0
|
33 |
+
networkx==3.0
|
34 |
+
numpy==1.24.1
|
35 |
+
orjson==3.9.7
|
36 |
+
packaging==23.1
|
37 |
+
pandas==2.1.1
|
38 |
+
Pillow==9.3.0
|
39 |
+
pydantic==2.4.2
|
40 |
+
pydantic_core==2.10.1
|
41 |
+
pydub==0.25.1
|
42 |
+
pyparsing==3.1.1
|
43 |
+
python-dateutil==2.8.2
|
44 |
+
python-multipart==0.0.6
|
45 |
+
pytz==2023.3.post1
|
46 |
+
PyYAML==6.0.1
|
47 |
+
referencing==0.30.2
|
48 |
+
requests==2.28.1
|
49 |
+
rpds-py==0.10.3
|
50 |
+
semantic-version==2.10.0
|
51 |
+
six==1.16.0
|
52 |
+
sniffio==1.3.0
|
53 |
+
starlette==0.27.0
|
54 |
+
sympy==1.12
|
55 |
+
toolz==0.12.0
|
56 |
+
torch==2.0.1+cu117
|
57 |
+
torchaudio==2.0.2+cu117
|
58 |
+
torchvision==0.15.2+cu117
|
59 |
+
tqdm==4.66.1
|
60 |
+
typing_extensions==4.8.0
|
61 |
+
tzdata==2023.3
|
62 |
+
urllib3==1.26.13
|
63 |
+
uvicorn==0.23.2
|
64 |
+
websockets==11.0.3
|
src/__init__.py
ADDED
File without changes
|
src/configs/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import os
|
3 |
+
from inspect import isclass
|
4 |
+
|
5 |
+
# import all files under configs/
|
6 |
+
configs_dir = os.path.dirname(__file__)
|
7 |
+
for file in os.listdir(configs_dir):
|
8 |
+
path = os.path.join(configs_dir, file)
|
9 |
+
if not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)):
|
10 |
+
config_name = file[: file.find(".py")] if file.endswith(".py") else file
|
11 |
+
module = importlib.import_module("src.configs." + config_name)
|
12 |
+
for attribute_name in dir(module):
|
13 |
+
attribute = getattr(module, attribute_name)
|
14 |
+
|
15 |
+
if isclass(attribute):
|
16 |
+
# Add the class to this package's variables
|
17 |
+
globals()[attribute_name] = attribute
|
src/configs/model_config.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class ModelConfig:
|
4 |
+
def __init__(self):
|
5 |
+
self.learning_rate = 0.001
|
6 |
+
self.batch_size = 32
|
7 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
self.epochs = 20
|
9 |
+
def get_config(self):
|
10 |
+
return self
|
src/data/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import os
|
3 |
+
from inspect import isclass
|
4 |
+
|
5 |
+
# import all files under configs/
|
6 |
+
configs_dir = os.path.dirname(__file__)
|
7 |
+
for file in os.listdir(configs_dir):
|
8 |
+
path = os.path.join(configs_dir, file)
|
9 |
+
if not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)):
|
10 |
+
config_name = file[: file.find(".py")] if file.endswith(".py") else file
|
11 |
+
module = importlib.import_module("src.data." + config_name)
|
12 |
+
for attribute_name in dir(module):
|
13 |
+
attribute = getattr(module, attribute_name)
|
14 |
+
|
15 |
+
if isclass(attribute):
|
16 |
+
# Add the class to this package's variables
|
17 |
+
globals()[attribute_name] = attribute
|
src/data/data_loader.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .dataset import CustomDataset
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from src.configs.model_config import ModelConfig
|
4 |
+
from .transform import data_transform
|
5 |
+
import os
|
6 |
+
|
7 |
+
num_classes = 3
|
8 |
+
config = ModelConfig().get_config()
|
9 |
+
|
10 |
+
train_dataset = CustomDataset(data_folder=os.path.join("data", 'raw'), transform=data_transform)
|
11 |
+
|
12 |
+
# # Calculate the split point
|
13 |
+
# split_index = int(0.8 * len(dataset))
|
14 |
+
|
15 |
+
# # Split the dataset into training and testing
|
16 |
+
# train_dataset = dataset[:split_index]
|
17 |
+
# test_dataset = dataset[split_index:]
|
18 |
+
|
19 |
+
|
20 |
+
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
|
21 |
+
|
src/data/dataset.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .transform import data_transform
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
class CustomDataset(Dataset):
|
8 |
+
def __init__(self, data_folder, transform=None):
|
9 |
+
self.data_folder = data_folder
|
10 |
+
self.image_files = os.listdir(data_folder)
|
11 |
+
self.transform = transform
|
12 |
+
|
13 |
+
def __len__(self):
|
14 |
+
return len(self.image_files)
|
15 |
+
|
16 |
+
def __getitem__(self, idx):
|
17 |
+
image_name = self.image_files[idx]
|
18 |
+
label =image_name[:len(image_name)-8] # Extract the label from the filename
|
19 |
+
|
20 |
+
|
21 |
+
image_path = os.path.join(self.data_folder, image_name)
|
22 |
+
image = Image.open(image_path).convert("RGB") # Ensure images are RGB
|
23 |
+
|
24 |
+
if self.transform:
|
25 |
+
image = self.transform(image)
|
26 |
+
# print("label: ", label, image)
|
27 |
+
if label == "circle":
|
28 |
+
label = 0
|
29 |
+
elif label == "square":
|
30 |
+
label = 1
|
31 |
+
elif label == "triangle":
|
32 |
+
label = 2
|
33 |
+
|
34 |
+
return image, label
|
35 |
+
|
src/data/transform.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision.transforms as transforms
|
2 |
+
|
3 |
+
data_transform = transforms.Compose([
|
4 |
+
transforms.Resize((128, 128)),
|
5 |
+
transforms.ToTensor(),
|
6 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Use appropriate values
|
7 |
+
])
|
src/models/model.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
class ShapeClassifier(nn.Module):
|
5 |
+
def __init__(self, num_classes):
|
6 |
+
super(ShapeClassifier, self).__init__()
|
7 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
|
8 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
9 |
+
self.fc1 = nn.Linear(16 * 64 * 64, 128)
|
10 |
+
self.fc2 = nn.Linear(128, num_classes)
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
x = self.pool(F.relu(self.conv1(x)))
|
14 |
+
x = x.view(-1, 16 * 64 * 64) # Adjust the dimensions based on your input image size
|
15 |
+
x = F.relu(self.fc1(x))
|
16 |
+
x = self.fc2(x)
|
17 |
+
return x
|
src/train.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from .models.model import ShapeClassifier
|
5 |
+
|
6 |
+
from src.configs.model_config import ModelConfig
|
7 |
+
from src.data.data_loader import train_loader, num_classes
|
8 |
+
|
9 |
+
|
10 |
+
def train():
|
11 |
+
config = ModelConfig().get_config()
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model = ShapeClassifier(num_classes=num_classes).to(device)
|
14 |
+
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate)
|
15 |
+
log_interval = 20
|
16 |
+
for epoch in range(config.epochs):
|
17 |
+
model.train()
|
18 |
+
running_loss = 0.0
|
19 |
+
|
20 |
+
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
21 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
22 |
+
optimizer.zero_grad()
|
23 |
+
|
24 |
+
outputs = model(inputs)
|
25 |
+
loss = F.cross_entropy(outputs, labels)
|
26 |
+
loss.backward()
|
27 |
+
optimizer.step()
|
28 |
+
|
29 |
+
running_loss += loss.item()
|
30 |
+
|
31 |
+
if batch_idx % log_interval == 0:
|
32 |
+
current_loss = running_loss / log_interval
|
33 |
+
print(
|
34 |
+
f"Epoch [{epoch + 1}/{config.epochs}], Batch [{batch_idx + 1}/{len(train_loader)}], Loss: {current_loss:.4f}")
|
35 |
+
running_loss = 0.0
|
36 |
+
|
37 |
+
# calculate the accuracy on the test set
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
model.eval()
|
41 |
+
correct = 0
|
42 |
+
total = 0
|
43 |
+
for inputs, labels in train_loader:
|
44 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
45 |
+
outputs = model(inputs)
|
46 |
+
predicted = torch.argmax(outputs.data, 1)
|
47 |
+
total += labels.size(0)
|
48 |
+
correct += (predicted == labels).sum().item()
|
49 |
+
print(f"Accuracy of the model on the test images: {100 * correct / total} %")
|
50 |
+
# save the model
|
51 |
+
torch.save(model.state_dict(), "model.pth")
|
web.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision.transforms import functional as F
|
6 |
+
from src.models.model import ShapeClassifier # Import your model class
|
7 |
+
from torchvision import transforms
|
8 |
+
import os
|
9 |
+
from src.data.transform import data_transform
|
10 |
+
|
11 |
+
|
12 |
+
def classify_drawing(drawing_image):
|
13 |
+
# return null if no drawing is provided
|
14 |
+
if drawing_image is None:
|
15 |
+
return None
|
16 |
+
|
17 |
+
# Load the trained model
|
18 |
+
num_classes = 3 # Set the number of classes
|
19 |
+
# Initialize your model class
|
20 |
+
model = ShapeClassifier(num_classes=num_classes)
|
21 |
+
model.load_state_dict(torch.load('model.pth'))
|
22 |
+
model.eval() # Set the model to evaluation mode
|
23 |
+
|
24 |
+
# Convert the drawing to a grayscale image
|
25 |
+
drawing = np.array(drawing_image)
|
26 |
+
|
27 |
+
drawing_tensor = data_transform(Image.fromarray(drawing))
|
28 |
+
|
29 |
+
# save all the drawing to a folder draw with index
|
30 |
+
Image.fromarray(drawing).save(f'draw/{len(os.listdir("draw"))}.png')
|
31 |
+
|
32 |
+
# Perform inference
|
33 |
+
with torch.no_grad():
|
34 |
+
output = model(drawing_tensor)
|
35 |
+
|
36 |
+
shape_classes = ["Circle", "Square", "Triangle"]
|
37 |
+
predicted_class = torch.argmax(output, dim=1).item()
|
38 |
+
predicted_label = shape_classes[predicted_class]
|
39 |
+
|
40 |
+
return predicted_label
|
41 |
+
|
42 |
+
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=classify_drawing,
|
45 |
+
inputs=gr.Image(type="pil"), # Use Sketchpad as input
|
46 |
+
outputs="text",
|
47 |
+
live=True,
|
48 |
+
capture_session=True,
|
49 |
+
)
|
50 |
+
iface.launch(server_port=8111)
|