Spaces:
Build error
Build error
| from torch import nn | |
| import torch.nn.functional as F | |
| # Ảnh gốc có kích thước 128x128x3 | |
| class ShapeClassifier(nn.Module): | |
| def __init__(self, num_classes, hidden_size=128): | |
| super(ShapeClassifier, self).__init__() | |
| # Layer 1: Convolutional layer with 3 input channels (RGB) and 16 output channels, using a 3x3 kernel and padding of 1 | |
| self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1) # ra 128x128x16 | |
| # Layer 2: Max pooling layer with a 2x2 kernel and stride of 2 to reduce spatial dimensions | |
| self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # ra 64x64x16 | |
| # Layer 3: Fully connected layer with input size 16 * 64 * 64 (depends on the input image size) and output size 128 | |
| self.fc1 = nn.Linear(16 * 64 * 64, hidden_size) | |
| # Layer 4: Fully connected layer with input size 128 and output size num_classes | |
| self.fc2 = nn.Linear(hidden_size, num_classes) | |
| def forward(self, x): | |
| # Forward pass through the network | |
| # Apply convolution, activation function (ReLU), and max pooling | |
| x = self.pool(F.relu(self.conv1(x))) | |
| # Adjust the dimensions for the fully connected layer | |
| x = x.view(-1, 16 * 64 * 64) | |
| # Apply activation function (ReLU) to the first fully connected layer | |
| x = F.relu(self.fc1(x)) | |
| # Output layer without activation function (applied later during loss computation) | |
| x = self.fc2(x) | |
| return x | |