npv2k1's picture
update
f6c0b9e verified
from .dataset import CustomDataset
from torch.utils.data import DataLoader
from src.configs.model_config import ModelConfig
from .transform import data_transform
import os
from torch.utils.data import random_split
num_classes = 3
config = ModelConfig().get_config()
all_dataset = CustomDataset(data_folder=os.path.join(
"data", 'raw'), transform=data_transform)
# split to train, val, test
total_size = len(all_dataset)
train_size = int(0.8 * total_size)
val_size = int(0.1 * total_size)
test_size = total_size - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(
all_dataset, [train_size, val_size, test_size])
train_loader = DataLoader(
train_dataset, batch_size=config.batch_size, shuffle=True)
val_loader = DataLoader(
val_dataset, batch_size=config.batch_size, shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=config.batch_size, shuffle=True)
def get_train_dataset(batch_size):
return DataLoader(
all_dataset, batch_size=batch_size, shuffle=True)