|
|
|
import math |
|
from typing import Any, List |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.structures import Instances |
|
|
|
from .. import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType |
|
from .chart import DensePoseChartLoss |
|
from .registry import DENSEPOSE_LOSS_REGISTRY |
|
from .utils import BilinearInterpolationHelper, LossDict |
|
|
|
|
|
@DENSEPOSE_LOSS_REGISTRY.register() |
|
class DensePoseChartWithConfidenceLoss(DensePoseChartLoss): |
|
""" """ |
|
|
|
def __init__(self, cfg: CfgNode): |
|
super().__init__(cfg) |
|
self.confidence_model_cfg = DensePoseConfidenceModelConfig.from_cfg(cfg) |
|
if self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.IID_ISO: |
|
self.uv_loss_with_confidences = IIDIsotropicGaussianUVLoss( |
|
self.confidence_model_cfg.uv_confidence.epsilon |
|
) |
|
elif self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.INDEP_ANISO: |
|
self.uv_loss_with_confidences = IndepAnisotropicGaussianUVLoss( |
|
self.confidence_model_cfg.uv_confidence.epsilon |
|
) |
|
|
|
def produce_fake_densepose_losses_uv(self, densepose_predictor_outputs: Any) -> LossDict: |
|
""" |
|
Overrides fake losses for fine segmentation and U/V coordinates to |
|
include computation graphs for additional confidence parameters. |
|
These are used when no suitable ground truth data was found in a batch. |
|
The loss has a value 0 and is primarily used to construct the computation graph, |
|
so that `DistributedDataParallel` has similar graphs on all GPUs and can |
|
perform reduction properly. |
|
|
|
Args: |
|
densepose_predictor_outputs: DensePose predictor outputs, an object |
|
of a dataclass that is assumed to have the following attributes: |
|
* fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S] |
|
* u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S] |
|
* v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S] |
|
Return: |
|
dict: str -> tensor: dict of losses with the following entries: |
|
* `loss_densepose_U`: has value 0 |
|
* `loss_densepose_V`: has value 0 |
|
* `loss_densepose_I`: has value 0 |
|
""" |
|
conf_type = self.confidence_model_cfg.uv_confidence.type |
|
if self.confidence_model_cfg.uv_confidence.enabled: |
|
loss_uv = ( |
|
densepose_predictor_outputs.u.sum() + densepose_predictor_outputs.v.sum() |
|
) * 0 |
|
if conf_type == DensePoseUVConfidenceType.IID_ISO: |
|
loss_uv += densepose_predictor_outputs.sigma_2.sum() * 0 |
|
elif conf_type == DensePoseUVConfidenceType.INDEP_ANISO: |
|
loss_uv += ( |
|
densepose_predictor_outputs.sigma_2.sum() |
|
+ densepose_predictor_outputs.kappa_u.sum() |
|
+ densepose_predictor_outputs.kappa_v.sum() |
|
) * 0 |
|
return {"loss_densepose_UV": loss_uv} |
|
else: |
|
return super().produce_fake_densepose_losses_uv(densepose_predictor_outputs) |
|
|
|
def produce_densepose_losses_uv( |
|
self, |
|
proposals_with_gt: List[Instances], |
|
densepose_predictor_outputs: Any, |
|
packed_annotations: Any, |
|
interpolator: BilinearInterpolationHelper, |
|
j_valid_fg: torch.Tensor, |
|
) -> LossDict: |
|
conf_type = self.confidence_model_cfg.uv_confidence.type |
|
if self.confidence_model_cfg.uv_confidence.enabled: |
|
u_gt = packed_annotations.u_gt[j_valid_fg] |
|
u_est = interpolator.extract_at_points(densepose_predictor_outputs.u)[j_valid_fg] |
|
v_gt = packed_annotations.v_gt[j_valid_fg] |
|
v_est = interpolator.extract_at_points(densepose_predictor_outputs.v)[j_valid_fg] |
|
sigma_2_est = interpolator.extract_at_points(densepose_predictor_outputs.sigma_2)[ |
|
j_valid_fg |
|
] |
|
if conf_type == DensePoseUVConfidenceType.IID_ISO: |
|
return { |
|
"loss_densepose_UV": ( |
|
self.uv_loss_with_confidences(u_est, v_est, sigma_2_est, u_gt, v_gt) |
|
* self.w_points |
|
) |
|
} |
|
elif conf_type in [DensePoseUVConfidenceType.INDEP_ANISO]: |
|
kappa_u_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_u)[ |
|
j_valid_fg |
|
] |
|
kappa_v_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_v)[ |
|
j_valid_fg |
|
] |
|
return { |
|
"loss_densepose_UV": ( |
|
self.uv_loss_with_confidences( |
|
u_est, v_est, sigma_2_est, kappa_u_est, kappa_v_est, u_gt, v_gt |
|
) |
|
* self.w_points |
|
) |
|
} |
|
return super().produce_densepose_losses_uv( |
|
proposals_with_gt, |
|
densepose_predictor_outputs, |
|
packed_annotations, |
|
interpolator, |
|
j_valid_fg, |
|
) |
|
|
|
|
|
class IIDIsotropicGaussianUVLoss(nn.Module): |
|
""" |
|
Loss for the case of iid residuals with isotropic covariance: |
|
$Sigma_i = sigma_i^2 I$ |
|
The loss (negative log likelihood) is then: |
|
$1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$, |
|
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates |
|
difference between estimated and ground truth UV values |
|
For details, see: |
|
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning |
|
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 |
|
""" |
|
|
|
def __init__(self, sigma_lower_bound: float): |
|
super(IIDIsotropicGaussianUVLoss, self).__init__() |
|
self.sigma_lower_bound = sigma_lower_bound |
|
self.log2pi = math.log(2 * math.pi) |
|
|
|
def forward( |
|
self, |
|
u: torch.Tensor, |
|
v: torch.Tensor, |
|
sigma_u: torch.Tensor, |
|
target_u: torch.Tensor, |
|
target_v: torch.Tensor, |
|
): |
|
|
|
|
|
|
|
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound |
|
|
|
|
|
delta_t_delta = (u - target_u) ** 2 + (v - target_v) ** 2 |
|
|
|
loss = 0.5 * (self.log2pi + 2 * torch.log(sigma2) + delta_t_delta / sigma2) |
|
return loss.sum() |
|
|
|
|
|
class IndepAnisotropicGaussianUVLoss(nn.Module): |
|
""" |
|
Loss for the case of independent residuals with anisotropic covariances: |
|
$Sigma_i = sigma_i^2 I + r_i r_i^T$ |
|
The loss (negative log likelihood) is then: |
|
$1/2 sum_{i=1}^n (log(2 pi) |
|
+ log sigma_i^2 (sigma_i^2 + ||r_i||^2) |
|
+ ||delta_i||^2 / sigma_i^2 |
|
- <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$, |
|
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates |
|
difference between estimated and ground truth UV values |
|
For details, see: |
|
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning |
|
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 |
|
""" |
|
|
|
def __init__(self, sigma_lower_bound: float): |
|
super(IndepAnisotropicGaussianUVLoss, self).__init__() |
|
self.sigma_lower_bound = sigma_lower_bound |
|
self.log2pi = math.log(2 * math.pi) |
|
|
|
def forward( |
|
self, |
|
u: torch.Tensor, |
|
v: torch.Tensor, |
|
sigma_u: torch.Tensor, |
|
kappa_u_est: torch.Tensor, |
|
kappa_v_est: torch.Tensor, |
|
target_u: torch.Tensor, |
|
target_v: torch.Tensor, |
|
): |
|
|
|
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound |
|
|
|
|
|
r_sqnorm2 = kappa_u_est**2 + kappa_v_est**2 |
|
delta_u = u - target_u |
|
delta_v = v - target_v |
|
|
|
|
|
delta_sqnorm = delta_u**2 + delta_v**2 |
|
delta_u_r_u = delta_u * kappa_u_est |
|
delta_v_r_v = delta_v * kappa_v_est |
|
|
|
delta_r = delta_u_r_u + delta_v_r_v |
|
|
|
|
|
delta_r_sqnorm = delta_r**2 |
|
denom2 = sigma2 * (sigma2 + r_sqnorm2) |
|
loss = 0.5 * ( |
|
self.log2pi + torch.log(denom2) + delta_sqnorm / sigma2 - delta_r_sqnorm / denom2 |
|
) |
|
return loss.sum() |
|
|