pmkhanh7890 commited on
Commit
badcb49
·
1 Parent(s): da7dbd0

Edit the demo

Browse files
application.py CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
4
  import requests
5
  from PIL import Image
6
 
7
- from src.application.content_detection import NewsAnalysis
8
  from src.application.url_reader import URLReader
9
  from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
10
 
@@ -46,16 +46,16 @@ def generate_analysis_report(news_title:str, news_content: str, news_image: Imag
46
  news_analysis.load_news(news_title, news_content, news_image)
47
  return news_analysis.generate_analysis_report(), news_analysis.analyze_details()
48
 
49
- news_analysis = NewsAnalysis()
50
  # Define the GUI
51
  with gr.Blocks() as demo:
52
- gr.Markdown("# FAKE NEWS DETECTION")
53
 
54
  with gr.Row():
55
  # SETTINGS
56
  with gr.Column(scale=1):
57
  with gr.Accordion("Settings"):
58
- gr.Markdown("This tool generates fake news by modifying the content of a given URL.")
59
 
60
  with gr.Accordion("1. Enter a URL"):
61
  url_input = gr.Textbox(
@@ -65,14 +65,14 @@ with gr.Blocks() as demo:
65
  )
66
  load_button = gr.Button("Load URL")
67
 
68
- with gr.Accordion("2. Select content-generation models", open=True):
69
  with gr.Row():
70
  text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
71
  image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
72
  generate_text_button = gr.Button("Generate text")
73
  generate_image_button = gr.Button("Generate image")
74
 
75
- with gr.Accordion("3. Replace any terms", open=True):
76
  replace_df = gr.Dataframe(
77
  headers=["Find what:", "Replace with:"],
78
  datatype=["str", "str"],
@@ -84,15 +84,15 @@ with gr.Blocks() as demo:
84
 
85
  # GENERATED CONTENT
86
  with gr.Column(scale=1):
87
- with gr.Accordion("Generated News Contents"):
88
  news_title = gr.Textbox(label="Title", value="")
89
  news_image = gr.Image(label="Image", type="filepath")
90
  news_content = gr.Textbox(label="Content", value="", lines=12)
91
 
92
- # FAKE NEWS ANALYSIS REPORT
93
  with gr.Column(scale=1):
94
- with gr.Accordion("Fake News Analysis"):
95
- detection_button = gr.Button("Check for fake news")
96
  analyzed_information = gr.HTML()
97
  with gr.Accordion("Detailed information"):
98
  detailed_analysis = gr.HTML()
 
4
  import requests
5
  from PIL import Image
6
 
7
+ from src.application.content_detection import NewsVerification
8
  from src.application.url_reader import URLReader
9
  from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
10
 
 
46
  news_analysis.load_news(news_title, news_content, news_image)
47
  return news_analysis.generate_analysis_report(), news_analysis.analyze_details()
48
 
49
+ news_analysis = NewsVerification()
50
  # Define the GUI
51
  with gr.Blocks() as demo:
52
+ gr.Markdown("# NEWS VERIFICATION")
53
 
54
  with gr.Row():
55
  # SETTINGS
56
  with gr.Column(scale=1):
57
  with gr.Accordion("Settings"):
58
+ gr.Markdown("Give an URL or fill in news by yourself")
59
 
60
  with gr.Accordion("1. Enter a URL"):
61
  url_input = gr.Textbox(
 
65
  )
66
  load_button = gr.Button("Load URL")
67
 
68
+ with gr.Accordion("2. Select content-generation models", open=True, visible=False):
69
  with gr.Row():
70
  text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
71
  image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
72
  generate_text_button = gr.Button("Generate text")
73
  generate_image_button = gr.Button("Generate image")
74
 
75
+ with gr.Accordion("3. Replace any terms", open=True, visible=False):
76
  replace_df = gr.Dataframe(
77
  headers=["Find what:", "Replace with:"],
78
  datatype=["str", "str"],
 
84
 
85
  # GENERATED CONTENT
86
  with gr.Column(scale=1):
87
+ with gr.Accordion("Input News"):
88
  news_title = gr.Textbox(label="Title", value="")
89
  news_image = gr.Image(label="Image", type="filepath")
90
  news_content = gr.Textbox(label="Content", value="", lines=12)
91
 
92
+ # NEWS ANALYSIS REPORT
93
  with gr.Column(scale=1):
94
+ with gr.Accordion("News Analysis"):
95
+ detection_button = gr.Button("Verify news")
96
  analyzed_information = gr.HTML()
97
  with gr.Accordion("Detailed information"):
98
  detailed_analysis = gr.HTML()
src/application/content_detection.py CHANGED
@@ -4,7 +4,7 @@ from src.application.text.model_detection import detect_text_by_ai_model
4
  from src.application.text.search_detection import check_human, detect_text_by_relative_search
5
 
6
 
7
- class NewsAnalysis():
8
  def __init__(self):
9
  self.news_text = ""
10
  self.news_title = ""
@@ -156,13 +156,21 @@ class NewsAnalysis():
156
  if self.text_referent_url is None:
157
  referred_news = "<li>No referent information</li>"
158
  else:
159
- print (f"self.text_referent_url: {self.text_referent_url}")
160
- referred_news = f"""<li><a href="{self.text_referent_url}" target="_blank">"Referred news: " + {self.text_referent_url[:40] + "..."}</a></li>"""
 
 
 
 
161
 
162
  if self.image_referent_url is None:
163
  referred_image = "<li>No referent information</li>"
164
  else:
165
- referred_image = f"""<li><a href="{self.text_referent_url}" target="_blank">"Referred news: " + {self.text_referent_url[:40] + "..."}</a></li>"""
 
 
 
 
166
 
167
  html_template = f"""
168
  <div>
 
4
  from src.application.text.search_detection import check_human, detect_text_by_relative_search
5
 
6
 
7
+ class NewsVerification():
8
  def __init__(self):
9
  self.news_text = ""
10
  self.news_title = ""
 
156
  if self.text_referent_url is None:
157
  referred_news = "<li>No referent information</li>"
158
  else:
159
+ if len(self.text_referent_url) > 40:
160
+ url_max_length = 40
161
+ else:
162
+ url_max_length = len(self.text_referent_url)
163
+
164
+ referred_news = f"""<li><a href="{self.text_referent_url}" target="_blank">{"Referred news: " + self.text_referent_url[:url_max_length] + "..."}</a></li>"""
165
 
166
  if self.image_referent_url is None:
167
  referred_image = "<li>No referent information</li>"
168
  else:
169
+ if len(self.image_referent_url) > 40:
170
+ url_max_length = 40
171
+ else:
172
+ url_max_length = len(self.text_referent_url)
173
+ referred_image = f"""<li><a href="{self.image_referent_url}" target="_blank">{"Referred news: " + self.image_referent_url[:url_max_length] + "..."}</a></li>"""
174
 
175
  html_template = f"""
176
  <div>
src/texts/SimLLM/Refactor/bart_score.py DELETED
@@ -1,205 +0,0 @@
1
- # %%
2
- import traceback
3
- from typing import List
4
-
5
- import numpy as np
6
- import torch
7
- import torch.nn as nn
8
- from transformers import (
9
- BartForConditionalGeneration,
10
- BartTokenizer,
11
- )
12
-
13
- from texts.config import (
14
- BATCH_SIZE,
15
- bart_scorer,
16
- )
17
- from texts.utils import normalize_text
18
-
19
-
20
- class BARTScorer:
21
- def __init__(
22
- self,
23
- device="cuda:0",
24
- max_length=1024,
25
- checkpoint="facebook/bart-large-cnn",
26
- ):
27
- # Set up model
28
- self.device = device
29
- self.max_length = max_length
30
- self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
31
- self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
32
- self.model.eval()
33
- self.model.to(device)
34
-
35
- # Set up loss
36
- self.loss_fct = nn.NLLLoss(
37
- reduction="none",
38
- ignore_index=self.model.config.pad_token_id,
39
- )
40
- self.lsm = nn.LogSoftmax(dim=1)
41
-
42
- def load(self, path=None):
43
- """Load model from paraphrase finetuning"""
44
- if path is None:
45
- path = "./bart.pth"
46
-
47
- self.model.load_state_dict(torch.load(path, map_location=self.device))
48
-
49
- def score(self, srcs, tgts, batch_size=16):
50
- """Score a batch of examples"""
51
- score_list = []
52
- for i in range(0, len(srcs), batch_size):
53
- src_list = srcs[i : i + batch_size]
54
- tgt_list = tgts[i : i + batch_size]
55
- try:
56
- with torch.no_grad():
57
- encoded_src = self.tokenizer(
58
- src_list,
59
- max_length=self.max_length,
60
- truncation=True,
61
- padding=True,
62
- return_tensors="pt",
63
- )
64
- encoded_tgt = self.tokenizer(
65
- tgt_list,
66
- max_length=self.max_length,
67
- truncation=True,
68
- padding=True,
69
- return_tensors="pt",
70
- )
71
- src_tokens = encoded_src["input_ids"].to(self.device)
72
- src_mask = encoded_src["attention_mask"].to(self.device)
73
-
74
- tgt_tokens = encoded_tgt["input_ids"].to(self.device)
75
- tgt_mask = encoded_tgt["attention_mask"]
76
- tgt_len = tgt_mask.sum(dim=1).to(self.device)
77
-
78
- output = self.model(
79
- input_ids=src_tokens,
80
- attention_mask=src_mask,
81
- labels=tgt_tokens,
82
- )
83
- logits = output.logits.view(
84
- -1,
85
- self.model.config.vocab_size,
86
- )
87
- loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
88
- loss = loss.view(tgt_tokens.shape[0], -1)
89
- loss = loss.sum(dim=1) / tgt_len
90
- curr_score_list = [-x.item() for x in loss]
91
- score_list += curr_score_list
92
-
93
- except RuntimeError:
94
- traceback.print_exc()
95
- print(f"source: {src_list}")
96
- print(f"target: {tgt_list}")
97
- exit(0)
98
- return score_list
99
-
100
- def multi_ref_score(
101
- self,
102
- srcs,
103
- tgts: List[List[str]],
104
- agg="mean",
105
- batch_size=4,
106
- ):
107
- # Assert we have the same number of references
108
- ref_nums = [len(x) for x in tgts]
109
- if len(set(ref_nums)) > 1:
110
- raise Exception(
111
- "You have different number of references per test sample.",
112
- )
113
-
114
- ref_num = len(tgts[0])
115
- score_matrix = []
116
- for i in range(ref_num):
117
- curr_tgts = [x[i] for x in tgts]
118
- scores = self.score(srcs, curr_tgts, batch_size)
119
- score_matrix.append(scores)
120
- if agg == "mean":
121
- score_list = np.mean(score_matrix, axis=0)
122
- elif agg == "max":
123
- score_list = np.max(score_matrix, axis=0)
124
- else:
125
- raise NotImplementedError
126
- return list(score_list)
127
-
128
- def test(self, batch_size=3):
129
- """Test"""
130
- src_list = [
131
- "This is a very good idea. Although simple, but very insightful.",
132
- "Can I take a look?",
133
- "Do not trust him, he is a liar.",
134
- ]
135
-
136
- tgt_list = [
137
- "That's stupid.",
138
- "What's the problem?",
139
- "He is trustworthy.",
140
- ]
141
-
142
- print(self.score(src_list, tgt_list, batch_size))
143
-
144
-
145
- def bart_score(text_1, text_2):
146
- """
147
- Computes the BART score between two texts.
148
-
149
- Parameters:
150
- text_1 (str): The first text.
151
- text_2 (str): The second text.
152
-
153
- Returns:
154
- float: The BART score.
155
- """
156
- score = bart_scorer.score([text_1], [text_2])
157
- return score
158
-
159
-
160
- def check_bart_score(input_text, raw_text):
161
- """
162
- Checks if the BART score between input_text and raw_text is above
163
- a threshold.
164
-
165
- Parameters:
166
- input_text (str): The input text.
167
- raw_text (str): The raw text to compare against.
168
-
169
- Returns:
170
- bool: True if the score is above the threshold, False otherwise.
171
- """
172
- THRESHOLD = -2.459
173
- normalized_text = normalize_text(raw_text)
174
- score = bart_score(input_text, normalized_text)[0]
175
- return score >= THRESHOLD
176
-
177
-
178
- def bart_score_in_batch(text_1, text_2):
179
- """
180
- Calculates the BART score for pairs of texts in batches.
181
-
182
- Args:
183
- text_1 (list of str): The first list of texts.
184
- text_2 (list of str): The second list of texts.
185
-
186
- Returns:
187
- list: A list of BART scores for each pair of texts.
188
- """
189
- return bart_scorer.score(text_1, text_2, batch_size=BATCH_SIZE)
190
-
191
-
192
- def extract_feature_in_batch(text_1, text_2, feature_kind):
193
- """
194
- Extracts features for pairs of texts using BART scores.
195
-
196
- Args:
197
- text_1 (list of str): The first list of texts.
198
- text_2 (list of str): The second list of texts.
199
- feature_kind (str): The type of feature to extract.
200
-
201
- Returns:
202
- list: A list of extracted features.
203
- """
204
- features = bart_score_in_batch(text_1, text_2)
205
- return features
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/config.py DELETED
@@ -1,115 +0,0 @@
1
- import os
2
- import configparser
3
-
4
- import google.generativeai as genai
5
- import nltk
6
- from datasets import load_metric
7
- from langchain.chat_models import ChatOpenAI
8
- from transformers import AutoTokenizer
9
-
10
- from texts.bart_score import BARTScorer
11
-
12
-
13
- # Constants
14
- # TODO: move to .env
15
- env = configparser.ConfigParser()
16
- env.read(".env") # An example environment: .sample-env
17
-
18
- # Get API key
19
- OPENAI_API_KEY = env["API_KEY"]["OPENAI_API_KEY"]
20
- GEMINI_API_KEY = env["API_KEY"]["GEMINI_API_KEY"]
21
- TOGETHER_API_KEY = env["API_KEY"]["TOGETHER_API_KEY"]
22
-
23
- # Environment setup
24
- os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
25
- os.environ["GEMINI_API_KEY"] = GEMINI_API_KEY
26
- os.environ["TOGETHER_API_KEY"] = TOGETHER_API_KEY
27
- os.environ["CURL_CA_BUNDLE"] = ""
28
- os.environ["REQUESTS_CA_BUNDLE"] = ""
29
-
30
- # File Path
31
- LOG_FILE = "data/99_log.txt"
32
- OUTPUT_FILE = "data/result.txt"
33
- METRIC_NAME = "roc_auc"
34
-
35
- # Training and Model Parameters
36
- TRAIN_RATIO = 0.8
37
- VAL_RATIO = 0.1
38
- NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING = 10
39
- PATIENCE = 3
40
- BATCH_SIZE = 64
41
- OPTIMIZED_METRIC = "roc_auc"
42
- SEED = 0
43
- TEMPERATURE = 0.0
44
- IS_OUTPUT_NORMALIZATION = False
45
- RATIO = 0.9
46
- HUMAN_LABEL = 0
47
- MACHINE_LABEL = 1
48
- BART = "bart"
49
-
50
- # Model Options
51
- MULTIMODEL = "multimodel"
52
- SINGLE_FROM_MULTIMODEL = "single_from_multimodel"
53
-
54
- # Downloading the NLTK "punkt" only if it's not already downloaded
55
- nltk.download("punkt", quiet=True)
56
-
57
- # API Models
58
- # TODO: consider using an enum
59
- API_ERROR = "API_ERROR"
60
- IGNORE_BY_API_ERROR = "IGNORE_BY_API_ERROR"
61
- CHATGPT = "ChatGPT"
62
- GEMINI = "Gemini"
63
- # LLAMA_2_70_CHAT_TEMP_0 = "LLaMa"
64
-
65
- # Initialize BARTScorer
66
- # TODO: consider loading model lazily
67
- bart_scorer = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
68
-
69
- # Generative AI configuration
70
- OPENAI_MODEL_NAME = "gpt-3.5-turbo-0125"
71
- GEMINI_MODEL_NAME = "gemini-pro"
72
-
73
- genai.configure(api_key=GEMINI_API_KEY, transport="rest")
74
- GEMINI_MODEL = genai.GenerativeModel(
75
- GEMINI_MODEL_NAME,
76
- generation_config={"temperature": TEMPERATURE},
77
- )
78
- OPENAI_MODEL = ChatOpenAI(
79
- temperature=TEMPERATURE,
80
- model_name=OPENAI_MODEL_NAME,
81
- )
82
-
83
- # Model paths
84
- MODEL_PATHS = {
85
- "LLaMa": "meta-llama/Llama-2-70b-chat-hf",
86
- "QWEN": "Qwen/Qwen1.5-72B-Chat",
87
- "Yi": "NousResearch/Nous-Hermes-2-Yi-34B",
88
- "Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1",
89
- "OLMo": "allenai/OLMo-7B-Instruct",
90
- "Phi": "microsoft/phi-2",
91
- "OpenChat": "openchat/openchat-3.5-1210",
92
- "WizardLM": "WizardLM/WizardLM-13B-V1.2",
93
- "Vicuna": "lmsys/vicuna-13b-v1.5",
94
- }
95
-
96
- TOGETHER_PATH = "https://api.together.xyz"
97
-
98
- # Roberta model configurations
99
- ROBERTA_BASE = "roberta-base"
100
- ROBERTA_LARGE = "roberta-large"
101
- ROBERTA_MODEL_PATHS = {
102
- ROBERTA_BASE: "roberta-base",
103
- ROBERTA_LARGE: "roberta-large",
104
- }
105
- LEARNING_RATES = {
106
- ROBERTA_BASE: 2e-5,
107
- ROBERTA_LARGE: 8e-6,
108
- }
109
- MODEL_NAME = ROBERTA_BASE
110
-
111
- # Tokenizer initialization
112
- tokenizer = AutoTokenizer.from_pretrained(ROBERTA_MODEL_PATHS[MODEL_NAME])
113
-
114
- # Metric loading
115
- metric = load_metric(METRIC_NAME)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/evaluation.py DELETED
@@ -1,84 +0,0 @@
1
- import nltk
2
- import numpy as np
3
- from config import metric
4
- from utils import refine_candidate_text
5
-
6
- from texts.bart_score import (
7
- bart_score,
8
- check_bart_score,
9
- )
10
-
11
-
12
- def compute_metrics(evaluation_predictions):
13
- """
14
- Function to compute evaluation metrics for model predictions.
15
-
16
- Parameters:
17
- evaluation_predictions (tuple): A tuple containing two elements:
18
- - predictions (array-like): The raw prediction scores from the model.
19
- - labels (array-like): The true labels for the evaluation data.
20
-
21
- Returns:
22
- dict: A dictionary containing the computed evaluation metrics.
23
- """
24
- # Unpack predictions and labels from the input tuple
25
- raw_predictions, true_labels = evaluation_predictions
26
-
27
- # Convert raw prediction scores to predicted class labels
28
- predicted_labels = np.argmax(raw_predictions, axis=1)
29
-
30
- # Compute and return the evaluation metrics
31
- return metric.compute(
32
- prediction_scores=predicted_labels,
33
- references=true_labels,
34
- average="macro",
35
- )
36
-
37
-
38
- def extract_by_best_similarity(input_text, raw_text):
39
- """
40
- Extracts the best candidate string from the raw text based on the highest
41
- similarity score compared to the input text. The similarity score is
42
- calculated using the BART score.
43
-
44
- Args:
45
- input_text (str): The original text.
46
- raw_text (str): The raw text containing multiple candidate strings.
47
-
48
- Returns:
49
- str: The best candidate string with the highest similarity score.
50
- Returns the input text if no suitable candidate is found.
51
- """
52
-
53
- # Refine the raw text
54
- refined_raw_text = refine_candidate_text(input_text, raw_text)
55
-
56
- # Tokenize the refined raw text into sentences
57
- raw_candidates = nltk.sent_tokenize(refined_raw_text)
58
-
59
- # Split sentences further by newlines to get individual candidates
60
- candidate_list = []
61
- for sentence in raw_candidates:
62
- candidate_list.extend(sentence.split("\n"))
63
-
64
- # Initialize variables to track the best similarity score
65
- # and the best candidate
66
- best_similarity = -9999
67
- best_candidate = ""
68
-
69
- # Iterate over each candidate to find the best one based on the BART score
70
- for candidate in candidate_list:
71
- refined_candidate = refine_candidate_text(input_text, candidate)
72
- if check_bart_score(input_text, refined_candidate):
73
- score = bart_score(input_text, refined_candidate)[0]
74
- if score > best_similarity:
75
- best_similarity = score
76
- best_candidate = refined_candidate
77
-
78
- # Print the best candidate found
79
- print(f"best_candidate = {best_candidate}")
80
-
81
- # Return the best candidate if found, otherwise return the input text
82
- if best_candidate == "":
83
- return input_text
84
- return best_candidate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/main_text.py DELETED
@@ -1,106 +0,0 @@
1
- import argparse
2
-
3
- from texts.config import CHATGPT
4
- from texts.models import process_multi_models_with_validation
5
- from texts.proofreading import generate_new_data_with_best_similarity
6
- from texts.utils import generate_file_name
7
-
8
-
9
- def main():
10
- """
11
- Main function to handle argument parsing and execute the sequence of
12
- operations including data generation and processing with multiple
13
- models.
14
- """
15
- parser = argparse.ArgumentParser(description="SimLLM.")
16
-
17
- # Argument for specifying the list of large language models
18
- parser.add_argument(
19
- "--LLMs",
20
- nargs="+",
21
- default=[CHATGPT, "Yi", "OpenChat"],
22
- help="List of large language models",
23
- )
24
-
25
- # Argument for specifying the list of training indexes
26
- parser.add_argument(
27
- "--train_indexes",
28
- type=int,
29
- default=[0, 1, 2],
30
- nargs="+",
31
- help="List of training indexes",
32
- )
33
-
34
- # Argument for specifying the list of testing indexes
35
- parser.add_argument(
36
- "--test_indexes",
37
- type=int,
38
- default=[0],
39
- nargs="+",
40
- help="List of testing indexes",
41
- )
42
-
43
- # Argument for specifying the number of samples
44
- parser.add_argument(
45
- "--num_samples",
46
- type=int,
47
- default=5000,
48
- help="Number of samples",
49
- )
50
-
51
- # Parse the command-line arguments
52
- args = parser.parse_args()
53
-
54
- # Static dataset parameters
55
- # dataset_name = "xsum"
56
- # column_name = "document"
57
- # num_samples = args.num_samples
58
- output_file = "data/human.csv"
59
-
60
- # Generate human data with shuffle
61
- # generate_human_with_shuffle(
62
- # dataset_name,
63
- # column_name,
64
- # num_samples,
65
- # output_file,
66
- # )
67
-
68
- # Existing data parameters
69
- existing_data_file = output_file
70
- existing_kinds = []
71
-
72
- # New kinds of models to generate data with
73
- new_kinds = args.LLMs
74
-
75
- # Generate new data with best similarity
76
- generate_new_data_with_best_similarity(
77
- existing_data_file,
78
- existing_kinds,
79
- new_kinds,
80
- )
81
-
82
- # Generate a filename for the multimodel CSV file
83
- multimodel_csv_file = generate_file_name(
84
- existing_data_file,
85
- existing_kinds,
86
- new_kinds,
87
- )
88
-
89
- # Number of samples to process (-1 means process all samples)
90
- num_samples_to_process = -1
91
-
92
- # Training and testing indexes from arguments
93
- training_indexes = args.train_indexes
94
- testing_indexes = args.test_indexes
95
-
96
- # Process multiple models with validation
97
- process_multi_models_with_validation(
98
- multimodel_csv_file,
99
- training_indexes,
100
- testing_indexes,
101
- num_samples_to_process,
102
- )
103
-
104
-
105
- if __name__ == "__main__":
106
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/models.py DELETED
@@ -1,842 +0,0 @@
1
- import os
2
- import shutil
3
- from copy import deepcopy
4
-
5
- import numpy as np
6
- from config import (
7
- BART,
8
- BATCH_SIZE,
9
- HUMAN_LABEL,
10
- LEARNING_RATES,
11
- MACHINE_LABEL,
12
- MODEL_NAME,
13
- MULTIMODEL,
14
- NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
15
- OPTIMIZED_METRIC,
16
- PATIENCE,
17
- ROBERTA_MODEL_PATHS,
18
- SINGLE_FROM_MULTIMODEL,
19
- TRAIN_RATIO,
20
- VAL_RATIO,
21
- tokenizer,
22
- )
23
- from datasets import Dataset
24
- from sklearn.base import accuracy_score
25
- from sklearn.metrics import roc_auc_score
26
- from sklearn.neural_network import MLPClassifier
27
- from transformers import (
28
- AutoModelForSequenceClassification,
29
- DataCollatorWithPadding,
30
- EarlyStoppingCallback,
31
- Trainer,
32
- TrainerCallback,
33
- TrainingArguments,
34
- )
35
-
36
- from texts.bart_score import (
37
- bart_score_in_batch,
38
- extract_feature_in_batch,
39
- )
40
- from texts.config import OUTPUT_FILE
41
- from texts.evaluation import compute_metrics
42
- from texts.utils import (
43
- check_error,
44
- combine_text_with_BERT_format,
45
- parse_multimodal_data,
46
- write_to_file,
47
- )
48
-
49
-
50
- class TextDetector:
51
- def __init__(self) -> None:
52
- self.model = None
53
- self.multimodel = None
54
- self.train_data = None
55
- self.val_data = None
56
- self.test_data = None
57
- self.train_features = None
58
- self.val_features = None
59
- self.test_features
60
-
61
- def text_analysis(text: str) -> float:
62
- score = 0.0
63
- return score
64
-
65
-
66
- class CustomCallback(TrainerCallback):
67
- """
68
- Custom callback to evaluate the training dataset at the end of each epoch.
69
- """
70
-
71
- def __init__(self, trainer) -> None:
72
- super().__init__()
73
- self._trainer = trainer
74
-
75
- def on_epoch_end(self, args, state, control, **kwargs):
76
- """
77
- At the end of each epoch, evaluate the training dataset.
78
- """
79
- if control.should_evaluate:
80
- control_copy = deepcopy(control)
81
- self._trainer.evaluate(
82
- eval_dataset=self._trainer.train_dataset,
83
- metric_key_prefix="train",
84
- )
85
- return control_copy
86
-
87
-
88
- def abstract_train(features, labels):
89
- """
90
- Trains a model using the given features and labels.
91
-
92
- Args:
93
- features (list): The input features for training.
94
- labels (list): The target labels for training.
95
-
96
- Returns:
97
- object: The trained model.
98
- """
99
- model = MLPClassifier()
100
- model.fit(features, labels)
101
- return model
102
-
103
-
104
- def evaluate_model(model, features, labels):
105
- """
106
- Evaluates the model's performance using accuracy and ROC AUC scores.
107
-
108
- Args:
109
- model (object): The trained model to evaluate.
110
- features (list): The input features for evaluation.
111
- labels (list): The target labels for evaluation.
112
-
113
- Returns:
114
- None
115
- """
116
- predictions = model.predict(features)
117
- rounded_predictions = [round(value) for value in predictions]
118
-
119
- accuracy = accuracy_score(labels, rounded_predictions)
120
- write_to_file(OUTPUT_FILE, f"Accuracy: {accuracy * 100.0:.1f}%\n")
121
-
122
- roc_auc = roc_auc_score(labels, rounded_predictions)
123
- write_to_file(OUTPUT_FILE, f"ROC AUC: {roc_auc * 100.0:.1f}%\n")
124
-
125
-
126
- def preprocess_function_multimodel(sample):
127
- """
128
- Preprocesses a given sample for a multi-model setup by calculating
129
- BART scores and formatting the text for BERT input.
130
-
131
- Args:
132
- sample (dict): A dictionary containing a key "text", which is a list of
133
- lists of strings.
134
-
135
- Returns:
136
- dict: A dictionary containing tokenized and preprocessed text data.
137
- """
138
- num_texts = len(sample["text"][0]) # Number of texts in each sub-sample
139
- texts_grouped_by_index = [
140
- [] for _ in range(num_texts)
141
- ] # Initialize empty lists for grouping texts by index
142
-
143
- # Group texts by their index across sub-samples
144
- for sub_sample in sample["text"]:
145
- for i in range(num_texts):
146
- texts_grouped_by_index[i].append(sub_sample[i])
147
-
148
- # Calculate BART scores for each text pair (text[0] with text[i])
149
- bart_scores = [
150
- bart_score_in_batch(
151
- texts_grouped_by_index[0],
152
- texts_grouped_by_index[i],
153
- )
154
- for i in range(1, num_texts)
155
- ]
156
-
157
- combined_texts = []
158
-
159
- # Process each sub-sample for BERT input
160
- for index, sub_sample in enumerate(sample["text"]):
161
- text_array = [sub_sample[0]] # Start with the input text
162
- score_generation_pairs = []
163
-
164
- # Pair scores with their corresponding generations
165
- for i in range(1, num_texts):
166
- generation_text = sub_sample[i]
167
- generation_score = bart_scores[i - 1][index]
168
- score_generation_pairs.append((generation_score, generation_text))
169
-
170
- # Sort pairs by score in descending order
171
- sorted_pairs = sorted(score_generation_pairs, reverse=True)
172
-
173
- # Append sorted texts to text_array
174
- for _, sorted_text in sorted_pairs:
175
- text_array.append(sorted_text)
176
-
177
- # Combine texts into a single BERT-formatted string
178
- combined_text = combine_text_with_BERT_format(text_array)
179
- combined_texts.append(combined_text)
180
-
181
- # Tokenize the combined texts for BERT
182
- return tokenizer(combined_texts, add_special_tokens=False, truncation=True)
183
-
184
-
185
- def preprocess_function_single_from_multimodel(sample):
186
- """
187
- Extracts the first text from each sub-sample in a multi-model sample and
188
- tokenizes it.
189
-
190
- Args:
191
- sample (dict): A dictionary containing a key "text", which is a list of
192
- lists of strings.
193
-
194
- Returns:
195
- dict: A dictionary containing tokenized text data.
196
- """
197
- combined_texts = []
198
-
199
- # Iterate through each sub-sample
200
- for sub_sample in sample["text"]:
201
- input_text = sub_sample[
202
- 0
203
- ] # Extract the first text from the sub-sample
204
- combined_texts.append(
205
- input_text,
206
- ) # Append it to the list of combined texts
207
-
208
- # Tokenize the combined texts
209
- return tokenizer(combined_texts, truncation=True)
210
-
211
-
212
- def train_only_by_transformer_with_test_evaluation_early_stop(
213
- train_data,
214
- test_data,
215
- input_type,
216
- num_classes=2,
217
- ):
218
- """
219
- Trains a transformer model using the provided training and testing
220
- datasets with early stopping.
221
-
222
- Args:
223
- train_data (Dataset): The training dataset.
224
- test_data (Dataset): The testing dataset.
225
- input_type (str): The type of input data, either MULTIMODEL or
226
- SINGLE_FROM_MULTIMODEL.
227
- num_classes (int, optional): The number of classes for classification.
228
- Defaults to 2.
229
-
230
- Returns:
231
- Trainer: The trained model wrapped in a Trainer object.
232
- """
233
- # Preprocess datasets based on the input type
234
- if input_type == MULTIMODEL:
235
- train_data = train_data.map(
236
- preprocess_function_multimodel,
237
- batched=True,
238
- )
239
- test_data = test_data.map(preprocess_function_multimodel, batched=True)
240
- elif input_type == SINGLE_FROM_MULTIMODEL:
241
- train_data = train_data.map(
242
- preprocess_function_single_from_multimodel,
243
- batched=True,
244
- )
245
- test_data = test_data.map(
246
- preprocess_function_single_from_multimodel,
247
- batched=True,
248
- )
249
-
250
- # Data collator to pad inputs
251
- data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
252
-
253
- # Load appropriate model based on number of classes
254
- if num_classes == 3:
255
- model = AutoModelForSequenceClassification.from_pretrained(
256
- "pretrained_model/roberta-base_num_labels_3",
257
- num_labels=num_classes,
258
- )
259
- else:
260
- model = AutoModelForSequenceClassification.from_pretrained(
261
- ROBERTA_MODEL_PATHS[MODEL_NAME],
262
- num_labels=num_classes,
263
- )
264
-
265
- learning_rate = LEARNING_RATES[MODEL_NAME]
266
- output_folder = "training_with_callbacks"
267
-
268
- # Remove the output folder if it already exists
269
- if os.path.exists(output_folder):
270
- shutil.rmtree(output_folder)
271
-
272
- # Training arguments
273
- training_args = TrainingArguments(
274
- output_dir=output_folder,
275
- evaluation_strategy="epoch",
276
- logging_strategy="epoch",
277
- save_strategy="epoch",
278
- learning_rate=learning_rate,
279
- per_device_train_batch_size=BATCH_SIZE,
280
- per_device_eval_batch_size=BATCH_SIZE,
281
- num_train_epochs=NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
282
- weight_decay=0.01,
283
- push_to_hub=False,
284
- metric_for_best_model=OPTIMIZED_METRIC,
285
- load_best_model_at_end=True,
286
- )
287
-
288
- # Create Trainer object
289
- trainer = Trainer(
290
- model=model,
291
- args=training_args,
292
- train_dataset=train_data,
293
- eval_dataset=test_data,
294
- tokenizer=tokenizer,
295
- data_collator=data_collator,
296
- compute_metrics=compute_metrics,
297
- callbacks=[EarlyStoppingCallback(early_stopping_patience=PATIENCE)],
298
- )
299
-
300
- # Add custom callback
301
- trainer.add_callback(CustomCallback(trainer))
302
-
303
- # Start training
304
- trainer.train()
305
-
306
- return trainer
307
-
308
-
309
- def create_pair_sample(data_item, training_indices):
310
- """
311
- Creates pair samples for training by comparing human data with
312
- machine-generated data.
313
-
314
- Args:
315
- data_item (dict): A dictionary containing 'human', 'single',
316
- and 'pair' data.
317
- training_indices (list): A list of indices used for training.
318
-
319
- Returns:
320
- list: A list of dictionaries, each containing a 'text' array
321
- and a 'label'.
322
- """
323
- # Initialize the result list
324
- result_samples = []
325
-
326
- # Check if there is any error in the data_item
327
- if check_error(data_item):
328
- return result_samples
329
-
330
- # Create machine samples
331
- for train_idx in training_indices:
332
- if data_item["human"] != data_item["single"][train_idx]:
333
- text_array = []
334
- machine_text = data_item["single"][train_idx]
335
- text_array.append(machine_text)
336
-
337
- for sub_idx in training_indices:
338
- text_array.append(data_item["pair"][train_idx][sub_idx])
339
-
340
- sample = {
341
- "text": text_array,
342
- "label": MACHINE_LABEL,
343
- }
344
- result_samples.append(sample)
345
-
346
- # Create human samples
347
- text_array = [data_item["human"]]
348
-
349
- for train_idx in training_indices:
350
- text_array.append(data_item["single"][train_idx])
351
-
352
- human_sample = {
353
- "text": text_array,
354
- "label": HUMAN_LABEL,
355
- }
356
-
357
- # Append human samples for each machine sample
358
- num_machine_samples = len(result_samples)
359
- for _ in range(num_machine_samples):
360
- result_samples.append(human_sample)
361
-
362
- return result_samples
363
-
364
-
365
- def create_pair_test_sample(data_item, training_indices, testing_indices):
366
- """
367
- Creates pair test samples by comparing human data with
368
- machine-generated data.
369
-
370
- Args:
371
- data_item (dict): A dictionary containing 'human', 'single', and
372
- 'pair' data.
373
- training_indices (list): A list of indices used for training.
374
- testing_indices (list): A list of indices used for testing.
375
-
376
- Returns:
377
- list: A list of dictionaries, each containing a 'text' array and a
378
- 'label'.
379
- """
380
- # Initialize the result list
381
- result_samples = []
382
-
383
- # Check if there is any error in the data_item
384
- if check_error(data_item):
385
- return result_samples
386
-
387
- # Create machine samples based on testing indices
388
- for test_idx in testing_indices:
389
- if data_item["human"] != data_item["single"][test_idx]:
390
- text_array = []
391
- machine_text = data_item["single"][test_idx]
392
- text_array.append(machine_text)
393
-
394
- for train_idx in training_indices:
395
- text_array.append(data_item["pair"][test_idx][train_idx])
396
-
397
- sample = {
398
- "text": text_array,
399
- "label": MACHINE_LABEL,
400
- }
401
- result_samples.append(sample)
402
-
403
- # Create human sample
404
- text_array = [data_item["human"]]
405
-
406
- for train_idx in training_indices:
407
- text_array.append(data_item["single"][train_idx])
408
-
409
- human_sample = {
410
- "text": text_array,
411
- "label": HUMAN_LABEL,
412
- }
413
-
414
- # Append the human sample for each machine sample
415
- num_machine_samples = len(result_samples)
416
- for _ in range(num_machine_samples):
417
- result_samples.append(human_sample)
418
-
419
- return result_samples
420
-
421
-
422
- def create_train_val_sample(data, training_indices):
423
- """
424
- Creates training and validation samples from the provided data.
425
-
426
- Args:
427
- data (list): A list of data items, each to be processed.
428
- training_indices (list): A list of indices used for training.
429
-
430
- Returns:
431
- list: A list of training and validation samples created from the data.
432
- """
433
- # Initialize the result list
434
- result_samples = []
435
-
436
- # Process each item in the data
437
- for data_item in data:
438
- # Create pair samples for the current item
439
- sub_samples = create_pair_sample(data_item, training_indices)
440
-
441
- # Extend the result list with the created sub-samples
442
- result_samples.extend(sub_samples)
443
-
444
- return result_samples
445
-
446
-
447
- def create_test_sample(data, training_indices, testing_indices):
448
- """
449
- Creates test samples from the provided data by comparing human data with
450
- machine-generated data.
451
-
452
- Args:
453
- data (list): A list of data items, each to be processed.
454
- training_indices (list): A list of indices used for training.
455
- testing_indices (list): A list of indices used for testing.
456
-
457
- Returns:
458
- list: A list of test samples created from the data.
459
- """
460
- # Initialize the result list
461
- result_samples = []
462
-
463
- # Process each item in the data
464
- for data_item in data:
465
- # Create pair test samples for the current item
466
- sub_samples = create_pair_test_sample(
467
- data_item,
468
- training_indices,
469
- testing_indices,
470
- )
471
-
472
- # Extend the result list with the created sub-samples
473
- result_samples.extend(sub_samples)
474
-
475
- return result_samples
476
-
477
-
478
- def distribute_data(data, train_indices, test_indices, train_ratio, val_ratio):
479
- """
480
- Distributes the data into training, validation, and test samples.
481
-
482
- Args:
483
- data (list): A list of data items to be split and processed.
484
- train_indices (list): A list of indices used for training.
485
- test_indices (list): A list of indices used for testing.
486
- train_ratio (float): The ratio of data to be used for training.
487
- val_ratio (float): The ratio of data to be used for validation.
488
-
489
- Returns:
490
- tuple: A tuple containing lists of training, validation,
491
- and test samples.
492
- """
493
- # Split the data into training, validation, and test sets
494
- train_data, val_data, test_data = split_train_val_test(
495
- data,
496
- train_ratio,
497
- val_ratio,
498
- )
499
-
500
- # Create training samples
501
- train_samples = create_train_val_sample(train_data, train_indices)
502
- write_to_file(OUTPUT_FILE, f"train samples = {len(train_samples)}\n")
503
-
504
- # Create validation samples
505
- val_samples = create_train_val_sample(val_data, train_indices)
506
- write_to_file(OUTPUT_FILE, f"val samples = {len(val_samples)}\n")
507
-
508
- # Create test samples
509
- test_samples = create_test_sample(test_data, train_indices, test_indices)
510
- write_to_file(OUTPUT_FILE, f"test samples = {len(test_samples)}\n")
511
-
512
- return train_samples, val_samples, test_samples
513
-
514
-
515
- def convert_to_huggingface_with_multimodel(samples):
516
- """
517
- Converts a list of samples to the Hugging Face Dataset format.
518
-
519
- Args:
520
- samples (list): A list of samples to be converted.
521
-
522
- Returns:
523
- Dataset: A Hugging Face Dataset object created from the samples.
524
- """
525
- return Dataset.from_list(samples)
526
-
527
-
528
- def train_by_transformer_with_multimodel_and_early_stop(
529
- train_samples,
530
- val_samples,
531
- input_type,
532
- ):
533
- """
534
- Trains a transformer model with multimodal data and early stopping.
535
-
536
- Args:
537
- train_samples (list): A list of training samples.
538
- val_samples (list): A list of validation samples.
539
- input_type (str): The type of input data (e.g., multimodal).
540
-
541
- Returns:
542
- object: The trained model with early stopping.
543
- """
544
- # Convert training and validation samples to Hugging Face Dataset format
545
- train_data = convert_to_huggingface_with_multimodel(train_samples)
546
- val_data = convert_to_huggingface_with_multimodel(val_samples)
547
-
548
- # Train the model with early stopping and return the trained model
549
- return train_only_by_transformer_with_test_evaluation_early_stop(
550
- train_data,
551
- val_data,
552
- input_type,
553
- )
554
-
555
-
556
- def test_by_transformer_with_multimodel(detector, test_samples, input_type):
557
- """
558
- Tests a trained transformer model with multimodal data.
559
-
560
- Args:
561
- detector (object): The trained model to be evaluated.
562
- test_samples (list): A list of test samples.
563
- input_type (str): The type of input data (e.g., multimodal).
564
-
565
- Returns:
566
- None
567
- """
568
- # Convert test samples to Hugging Face Dataset format
569
- test_data = convert_to_huggingface_with_multimodel(test_samples)
570
-
571
- # Apply the appropriate preprocessing function based on the input type
572
- if input_type == MULTIMODEL:
573
- test_data = test_data.map(preprocess_function_multimodel, batched=True)
574
- elif input_type == SINGLE_FROM_MULTIMODEL:
575
- test_data = test_data.map(
576
- preprocess_function_single_from_multimodel,
577
- batched=True,
578
- )
579
-
580
- # Evaluate the model on the test data
581
- result = detector.evaluate(eval_dataset=test_data)
582
-
583
- # Extract and log the ROC AUC score
584
- roc_auc = result["eval_roc_auc"]
585
- write_to_file(OUTPUT_FILE, "roc_auc: %.1f%%" % (roc_auc * 100.0) + "\n")
586
-
587
-
588
- def extract_by_feature_kind(samples, feature_type):
589
- """
590
- Extracts features from the given samples based on the specified feature
591
- type.
592
-
593
- Args:
594
- samples (list): A list of samples where each sample is a dictionary
595
- with 'text' and 'label' keys.
596
- feature_type (str): The type of feature to extract.
597
-
598
- Returns:
599
- tuple: A tuple containing the extracted features and corresponding
600
- labels.
601
- """
602
- text_1_list = []
603
- text_2_list = []
604
- labels = []
605
-
606
- for sample in samples:
607
- text_1_list.append(sample["text"][0])
608
- text_2_list.append(sample["text"][1])
609
- labels.append(sample["label"])
610
-
611
- # Extract features in batch based on the feature type
612
- features = extract_feature_in_batch(text_1_list, text_2_list, feature_type)
613
-
614
- return features, labels
615
-
616
-
617
- def train_by_feature_kind(train_samples, feature_type):
618
- """
619
- Trains a model using features extracted from the training samples based on
620
- the specified feature type.
621
-
622
- Args:
623
- train_samples (list): A list of training samples where each sample is
624
- a dictionary with 'text' and 'label' keys.
625
- feature_type (str): The type of feature to extract for training.
626
-
627
- Returns:
628
- object: The trained model.
629
- """
630
- # Extract features and labels from the training samples
631
- features, labels = extract_by_feature_kind(train_samples, feature_type)
632
-
633
- # Convert features to a numpy array and reshape for training
634
- features = np.array(features)
635
- features = features.reshape(-1, 1)
636
-
637
- # Train the model using the extracted features and labels
638
- model = abstract_train(features, labels)
639
-
640
- return model
641
-
642
-
643
- def test_by_feature_kind(detector, samples, feature_type):
644
- """
645
- Tests a detector using features extracted from the provided samples based
646
- on the specified feature type.
647
-
648
- Args:
649
- detector (object): The detector model to be evaluated.
650
- samples (list): A list of samples where each sample is a dictionary
651
- with 'text' and 'label' keys.
652
- feature_type (str): The type of feature to extract for testing.
653
-
654
- Returns:
655
- None
656
- """
657
- # Extract features and labels from the samples
658
- features, labels = extract_by_feature_kind(samples, feature_type)
659
-
660
- # Convert features to a numpy array and reshape for evaluation
661
- features = np.array(features)
662
- features = features.reshape(-1, 1)
663
-
664
- # Evaluate the detector model using the extracted features and labels
665
- evaluate_model(detector, features, labels)
666
-
667
-
668
- def general_process_multimodels_train_val_test(
669
- train_samples,
670
- val_samples,
671
- test_samples,
672
- ):
673
- """
674
- General process for training, validating, and testing models using
675
- multi-model and feature kind approaches.
676
-
677
- Args:
678
- train_samples (list): Training samples.
679
- val_samples (list): Validation samples.
680
- test_samples (list): Test samples.
681
-
682
- Returns:
683
- None
684
- """
685
- # Multi-model approach
686
- input_kind = MULTIMODEL
687
- write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
688
-
689
- # Train detector using multi-model with early stopping
690
- detector = train_by_transformer_with_multimodel_and_early_stop(
691
- train_samples,
692
- val_samples,
693
- input_kind,
694
- )
695
-
696
- # Evaluate on train set
697
- write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
698
- test_by_transformer_with_multimodel(detector, train_samples, input_kind)
699
-
700
- # Evaluate on validation set
701
- write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
702
- test_by_transformer_with_multimodel(detector, val_samples, input_kind)
703
-
704
- # Evaluate on test set
705
- write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
706
- test_by_transformer_with_multimodel(detector, test_samples, input_kind)
707
-
708
- # Single from multi-model approach
709
- input_kind = SINGLE_FROM_MULTIMODEL
710
- write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
711
-
712
- # Train detector using single from multi-model with early stopping
713
- detector = train_by_transformer_with_multimodel_and_early_stop(
714
- train_samples,
715
- val_samples,
716
- input_kind,
717
- )
718
-
719
- # Evaluate on train set
720
- write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
721
- test_by_transformer_with_multimodel(detector, train_samples, input_kind)
722
-
723
- # Evaluate on validation set
724
- write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
725
- test_by_transformer_with_multimodel(detector, val_samples, input_kind)
726
-
727
- # Evaluate on test set
728
- write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
729
- test_by_transformer_with_multimodel(detector, test_samples, input_kind)
730
-
731
- # Feature kind approach
732
- sample_length = len(train_samples[0]["text"])
733
- if (
734
- sample_length == 2
735
- ): # Check if the sample length is 2, indicating BART feature kind
736
- feature_kind = BART
737
- write_to_file(OUTPUT_FILE, "\nFeature kind = {feature_kind} \n")
738
-
739
- # Train detector using feature kind
740
- detector = train_by_feature_kind(train_samples, feature_kind)
741
-
742
- # Evaluate on train set
743
- write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
744
- test_by_feature_kind(detector, train_samples, feature_kind)
745
-
746
- # Evaluate on validation set
747
- write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
748
- test_by_feature_kind(detector, val_samples, feature_kind)
749
-
750
- # Evaluate on test set
751
- write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
752
- test_by_feature_kind(detector, test_samples, feature_kind)
753
-
754
-
755
- def process_multi_models_with_validation(
756
- multimodel_csv_file,
757
- train_indices,
758
- test_indices,
759
- num_samples,
760
- ):
761
- """
762
- Processes multi-model data with validation, training, and testing.
763
-
764
- Args:
765
- multimodel_csv_file (str): Path to the CSV file containing
766
- multi-model data.
767
- train_indices (list): Indices for the training data.
768
- test_indices (list): Indices for the testing data.
769
- num_samples (int): Number of samples to process.
770
-
771
- Returns:
772
- None
773
- """
774
- # Log the details of the process
775
- write_to_file(OUTPUT_FILE, f"PROCESSING FILE={multimodel_csv_file} \n")
776
- write_to_file(OUTPUT_FILE, f"EXPERIMENT WITH {MODEL_NAME} model \n")
777
- write_to_file(
778
- OUTPUT_FILE,
779
- f"NUMBER OF MAX EPOCHS WITH EARLY STOPPING =\
780
- {NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING} \n",
781
- )
782
- write_to_file(OUTPUT_FILE, f"PATIENCE = {PATIENCE} \n")
783
- write_to_file(OUTPUT_FILE, f"OPTIMIZED METRIC = {OPTIMIZED_METRIC} \n")
784
- write_to_file(OUTPUT_FILE, f"BATCH SIZE = {BATCH_SIZE} \n")
785
- write_to_file(OUTPUT_FILE, f"Number of samples = {num_samples} \n")
786
-
787
- # Read multi-model data from the CSV file
788
- data = parse_multimodal_data(multimodel_csv_file)
789
-
790
- # Limit data to the specified number of samples
791
- data = data[:num_samples]
792
-
793
- # Distribute data into training, validation, and testing sets
794
- train_samples, val_samples, test_samples = distribute_data(
795
- data,
796
- train_indices,
797
- test_indices,
798
- TRAIN_RATIO,
799
- VAL_RATIO,
800
- )
801
-
802
- # Log the training and testing indices
803
- write_to_file(
804
- OUTPUT_FILE,
805
- f"Multimodel training with train indices {train_indices},\
806
- test with test indices {test_indices} \n",
807
- )
808
-
809
- # Process the multi-models for training, validation, and testing
810
- general_process_multimodels_train_val_test(
811
- train_samples,
812
- val_samples,
813
- test_samples,
814
- )
815
-
816
-
817
- def split_train_val_test(data, train_ratio, val_ratio):
818
- """
819
- Splits the dataset into training, validation, and test sets based on
820
- specified ratios.
821
-
822
- Args:
823
- data (list): The dataset to be split.
824
- train_ratio (float): The ratio of the dataset to be used for training.
825
- val_ratio (float): The ratio of the dataset to be used for validation.
826
-
827
- Returns:
828
- tuple: A tuple containing three lists
829
- (train_data, val_data, test_data).
830
- """
831
- # Calculate the number of samples for the training set
832
- num_train_samples = int(len(data) * train_ratio)
833
-
834
- # Calculate the number of samples for the validation set
835
- num_val_samples = int(len(data) * val_ratio)
836
-
837
- # Split the data into training, validation, and test sets
838
- train_data = data[:num_train_samples]
839
- val_data = data[num_train_samples : (num_train_samples + num_val_samples)]
840
- test_data = data[(num_train_samples + num_val_samples) :]
841
-
842
- return train_data, val_data, test_data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/proofreading.py DELETED
@@ -1,354 +0,0 @@
1
- import os
2
-
3
- from config import (
4
- CHATGPT,
5
- GEMINI,
6
- GEMINI_MODEL,
7
- IS_OUTPUT_NORMALIZATION,
8
- MODEL_PATHS,
9
- OPENAI_MODEL,
10
- TEMPERATURE,
11
- TOGETHER_API_KEY,
12
- TOGETHER_PATH,
13
- )
14
- from evaluation import extract_by_best_similarity
15
- from openai import OpenAI
16
- from utils import (
17
- generate_column_names,
18
- generate_file_name,
19
- get_column,
20
- normalize_text,
21
- print_and_log,
22
- read_csv_data,
23
- write_new_data,
24
- write_to_csv,
25
- )
26
-
27
-
28
- def abstract_proofread(model_path, temperature, base_url, api_key, prompt):
29
- """
30
- Function to proofread an abstract using an AI language model.
31
-
32
- Parameters:
33
- model_path (str): The path or identifier of the AI model to use.
34
- temperature (float): Sampling temperature for the model's output.
35
- base_url (str): The base URL for the API endpoint.
36
- api_key (str): The API key for authentication.
37
- prompt (str): The text prompt to provide to the AI for proofreading.
38
-
39
- Returns:
40
- str: The proofread abstract generated by the AI model.
41
- """
42
- # Initialize the AI client with the provided API key and base URL
43
- ai_client = OpenAI(api_key=api_key, base_url=base_url)
44
-
45
- # Create a chat completion request with the system message and user prompt
46
- chat_completion = ai_client.chat.completions.create(
47
- messages=[
48
- {
49
- "role": "system",
50
- "content": "You are an AI assistant",
51
- },
52
- {
53
- "role": "user",
54
- "content": prompt,
55
- },
56
- ],
57
- model=model_path,
58
- max_tokens=1024,
59
- temperature=temperature,
60
- )
61
-
62
- # Return the content of the first choice's message
63
- return chat_completion.choices[0].message.content
64
-
65
-
66
- def proofread_by_model_name(model_name, input_text, normalize_output):
67
- """
68
- Proofreads the given input text using the specified model.
69
-
70
- Args:
71
- model_name (str): The name of the model to use for proofreading.
72
- input_text (str): The text to be proofread.
73
- normalize_output (bool): Whether to normalize the output or not.
74
-
75
- Returns:
76
- str: The proofread text.
77
- """
78
- # Constants for API access
79
- base_url = TOGETHER_PATH
80
- api_key = TOGETHER_API_KEY
81
- temperature = TEMPERATURE
82
-
83
- # Retrieve the model path from the dictionary
84
- if model_name in MODEL_PATHS:
85
- model_path = MODEL_PATHS[model_name]
86
- else:
87
- raise ValueError("Model name not found in the dictionary.")
88
-
89
- # Formulate the prompt for the model
90
- prompt = f"Proofreading for the text: ```{input_text}```"
91
-
92
- # Apply output normalization if required
93
- if normalize_output:
94
- prompt = output_normalization(prompt)
95
-
96
- # Debugging: Print the prompt
97
- print(f"Prompt: {prompt}")
98
-
99
- # Call the abstract proofreading function with the prepared parameters
100
- return abstract_proofread(
101
- model_path,
102
- temperature,
103
- base_url,
104
- api_key,
105
- prompt,
106
- )
107
-
108
-
109
- def gemini_proofread(input_text, normalize_output):
110
- """
111
- Proofreads the given text using the GEMINI_MODEL.
112
-
113
- Parameters:
114
- input_text (str): The text to be proofread.
115
- normalize_output (bool): Flag indicating whether to normalize the output.
116
-
117
- Returns:
118
- str: The proofread text.
119
- """
120
- prompt = f"Proofreading for the text: ```{input_text}```"
121
- if normalize_output:
122
- prompt = output_normalization(prompt)
123
- response = GEMINI_MODEL.generate_content(prompt)
124
- return response.text
125
-
126
-
127
- def chatGPT_proofread(input_text, normalize_output):
128
- """
129
- Proofreads the given text using the chat_model.
130
-
131
- Parameters:
132
- input_text (str): The text to be proofread.
133
- normalize_output (bool): Flag indicating whether to normalize the output.
134
-
135
- Returns:
136
- str: The proofread text.
137
- """
138
- prompt = f"Proofreading for the text: ```{input_text}```"
139
- if normalize_output:
140
- prompt = output_normalization(prompt)
141
-
142
- print(f"Starting API call with prompt: {prompt}")
143
- result = OPENAI_MODEL.predict(prompt)
144
- print(f"Ending API call with prompt: {prompt}")
145
-
146
- return result
147
-
148
-
149
- def output_normalization(prompt):
150
- """
151
- Normalizes the output by appending a specific instruction to the prompt.
152
-
153
- Parameters:
154
- prompt (str): The initial prompt.
155
-
156
- Returns:
157
- str: The modified prompt.
158
- """
159
- return (
160
- prompt
161
- + " Please only output the proofread text without any explanation."
162
- )
163
-
164
-
165
- def proofread_with_best_similarity(input_text, model_kind):
166
- """
167
- Proofreads the input text using the specified model and extracts the
168
- best-corrected text based on similarity.
169
-
170
- Args:
171
- input_text (str): The original text to be proofread.
172
- model_kind (str): The kind of model to use for proofreading
173
- (e.g., CHATGPT, GEMINI).
174
-
175
- Returns:
176
- tuple: A tuple containing the raw proofread text and the
177
- best-corrected text.
178
- """
179
-
180
- # Normalize the input text
181
- normalized_input_text = normalize_text(input_text)
182
- print_and_log(f"INPUT = {normalized_input_text}")
183
-
184
- result_text = ""
185
- raw_text = ""
186
-
187
- for i in range(
188
- 1,
189
- ): # Loop is redundant as it runs only once;
190
- # consider removing if unnecessary
191
- # Select the proofreading model based on model_kind
192
- if model_kind == CHATGPT:
193
- raw_text = chatGPT_proofread(
194
- normalized_input_text,
195
- normalize_output=IS_OUTPUT_NORMALIZATION,
196
- )
197
- elif model_kind == GEMINI:
198
- raw_text = gemini_proofread(
199
- normalized_input_text,
200
- normalize_output=IS_OUTPUT_NORMALIZATION,
201
- )
202
- else:
203
- raw_text = proofread_by_model_name(
204
- model_kind,
205
- normalized_input_text,
206
- normalize_output=IS_OUTPUT_NORMALIZATION,
207
- )
208
-
209
- # Extract the best candidate text based on similarity
210
- result_text = extract_by_best_similarity(
211
- normalized_input_text,
212
- raw_text,
213
- )
214
-
215
- # Log the raw and result texts
216
- print_and_log(f"RAW_{i} = {raw_text}")
217
- print
218
- # Normalize the result text
219
- result_text = normalize_text(result_text)
220
-
221
- # If a valid result is obtained, return it
222
- if result_text != "":
223
- return raw_text, result_text
224
-
225
- # Return the raw and result texts
226
- return raw_text, result_text
227
-
228
-
229
- def generate_new_data_with_best_similarity(
230
- existing_data_file,
231
- existing_kinds,
232
- new_kinds,
233
- ):
234
- """
235
- Generates new data with the best similarity based on existing and new
236
- kinds, and writes the results to a CSV file.
237
-
238
- Args:
239
- existing_data_file (str): The path to the existing data file.
240
- existing_kinds (list): A list of existing kinds.
241
- new_kinds (list): A list of new kinds.
242
-
243
- Returns:
244
- None
245
- """
246
-
247
- # Combine existing and new kinds into a single list
248
- all_kinds = existing_kinds + new_kinds
249
-
250
- # Generate column names for the CSV file
251
- column_names = generate_column_names(all_kinds)
252
-
253
- # Generate column names for existing kinds
254
- existing_column_names = generate_column_names(existing_kinds)
255
-
256
- # Generate the output file name
257
- output_file = generate_file_name(
258
- existing_data_file,
259
- existing_kinds,
260
- new_kinds,
261
- )
262
-
263
- # Create the output file with column names if it doesn't exist
264
- if not os.path.exists(output_file):
265
- write_to_csv(output_file, column_names)
266
-
267
- # Read existing data from the file
268
- existing_data = {
269
- kind: get_column(existing_data_file, kind)
270
- for kind in existing_column_names
271
- }
272
-
273
- # Read input data from the output file
274
- input_data = read_csv_data(output_file)
275
- start_index = len(input_data)
276
- print(f"start_index = {start_index}")
277
-
278
- num_rows = len(existing_data["human"])
279
- global_generate_set = []
280
- global_reuse = []
281
-
282
- for index in range(start_index, num_rows):
283
- # Initialize generation and reuse sets
284
- generate_set = []
285
- reuse_set = []
286
-
287
- # Prepare the current generation dictionary
288
- current_generation = {
289
- kind: existing_data[kind][index] for kind in existing_column_names
290
- }
291
- print(f"current_generation before generation = {current_generation}")
292
-
293
- human_text = current_generation["human"]
294
-
295
- # Generate new kinds based on human text
296
- for kind in new_kinds:
297
- _, generated_text = proofread_with_best_similarity(
298
- human_text,
299
- kind,
300
- )
301
- current_generation[kind] = generated_text
302
- generate_set.append(kind)
303
-
304
- print(f"current_generation after generate one = {current_generation}")
305
-
306
- # Generate combinations of kinds
307
- for first_kind in all_kinds:
308
- for second_kind in all_kinds:
309
- combination_name = f"{first_kind}_{second_kind}"
310
-
311
- if combination_name not in current_generation:
312
- if (
313
- first_kind in current_generation
314
- and current_generation[first_kind] == human_text
315
- ):
316
- generated_text = current_generation[second_kind]
317
- reuse_set.append(
318
- f"{combination_name} from {second_kind}",
319
- )
320
- else:
321
- is_need_generation = True
322
- for first_kind_2 in all_kinds:
323
- if (
324
- first_kind != first_kind_2
325
- and current_generation[first_kind]
326
- == current_generation[first_kind_2]
327
- ):
328
- combination_name_2 = (
329
- f"{first_kind_2}_{second_kind}"
330
- )
331
- if combination_name_2 in current_generation:
332
- generated_text = current_generation[
333
- combination_name_2
334
- ]
335
- reuse_set.append(
336
- f"{combination_name} from {combination_name_2}", # noqa: E501
337
- )
338
- is_need_generation = False
339
- break
340
- if is_need_generation:
341
- _, generated_text = proofread_with_best_similarity(
342
- current_generation[first_kind],
343
- second_kind,
344
- )
345
- generate_set.append(f"{first_kind}_{second_kind}")
346
-
347
- current_generation[combination_name] = generated_text
348
-
349
- # Write the current generation to the output file
350
- write_new_data(output_file, current_generation, column_names)
351
-
352
- # Update global sets
353
- global_generate_set.append(generate_set)
354
- global_reuse
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/readme.md DELETED
@@ -1,67 +0,0 @@
1
- # [Text] SimLLM: Detecting Sentences Generated by Large Language Models Using Similarity between the Generation and its Re-Generation
2
-
3
- ## **Getting Started**
4
- 1. **Clone the repository:**
5
- ```bash
6
- git clone https://github.com/Tokyo-Techies/prj-nict-ai-content-detection
7
- ```
8
-
9
- 2. **Set up the environment:**
10
- Using virtual environment:
11
- ```bash
12
- python -m venv .venv
13
- source .venv/bin/activate
14
- ```
15
-
16
- 3. **Install dependencies:**
17
- ```bash
18
- pip install -r requirements.txt
19
- ```
20
-
21
-
22
- 4. **API Keys** (optional)
23
- - Obtain API keys for the corresponding models and insert them into the `SimLLM.py` file:
24
- - ChatGPT: [OpenAI API](https://openai.com/index/openai-api/)
25
- - Gemini: [Google Gemini API](https://ai.google.dev/gemini-api/docs/api-key)
26
- - Other LLMs: [Together API](https://api.together.ai/)
27
-
28
-
29
- 5. **Run the project:**
30
- ```bash
31
- main_text.py
32
- ```
33
-
34
- ### Parameters
35
-
36
- - `LLMs`: List of large language models to use. Available models include 'ChatGPT', 'Yi', 'OpenChat', 'Gemini', 'LLaMa', 'Phi', 'Mixtral', 'QWen', 'OLMO', 'WizardLM', and 'Vicuna'. Default is `['ChatGPT', 'Yi', 'OpenChat']`.
37
- - `train_indexes`: List of LLM indexes for training. Default is `[0, 1, 2]`.
38
- - `test_indexes`: List of LLM indexes for testing. Default is `[0]`.
39
- - `num_samples`: Number of samples. Default is 5000.
40
-
41
- ### Examples
42
-
43
- - Running with default parameters:
44
- `python SimLLM.py`
45
-
46
- - Running with customized parameters:
47
- `python SimLLM.py --LLMs ChatGPT --train_indexes 0 --test_indexes 0`
48
-
49
- ## Dataset
50
-
51
- The `dataset.csv` file contains both human and generated texts from 12 large language models, including:
52
- ChatGPT, GPT-4o, Yi, OpenChat, Gemini, LLaMa, Phi, Mixtral, QWen, OLMO, WizardLM, and Vicuna.
53
-
54
- ## Citation
55
-
56
- ```bibtex
57
- @inproceedings{nguyen2024SimLLM,
58
- title={SimLLM: Detecting Sentences Generated by Large Language Models Using Similarity between the Generation and its Re-generation},
59
- author={Nguyen-Son, Hoang-Quoc and Dao, Minh-Son and Zettsu, Koji},
60
- booktitle={The Conference on Empirical Methods in Natural Language Processing},
61
- year={2024}
62
- }
63
- ```
64
-
65
- ## Acknowledgements
66
-
67
- - BARTScore: [BARTScore GitHub Repository](https://github.com/neulab/BARTScore)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/Refactor/utils.py DELETED
@@ -1,527 +0,0 @@
1
- import csv
2
- import logging
3
- import os
4
- import random
5
-
6
- import nltk
7
- import numpy as np
8
- import pandas as pd
9
- from config import ( # LOG_FILE,
10
- API_ERROR,
11
- IGNORE_BY_API_ERROR,
12
- SEED,
13
- )
14
- from datasets import load_dataset
15
-
16
-
17
- def print_and_log(message: str):
18
- # TODO: redefine logging
19
- """
20
- Log message.
21
-
22
- Args:
23
- message (str): The message to be printed and logged.
24
- """
25
- logging.info(message)
26
-
27
-
28
- def write_to_file(filename: str, content: str):
29
- """
30
- Writes the given content to a specified file.
31
-
32
- Args:
33
- filename (str): The path to the file to write content.
34
- content (str): The content to be written.
35
- """
36
- print(content)
37
- with open(filename, "a+", encoding="utf-8") as file:
38
- file.write(content)
39
-
40
-
41
- def write_new_data(
42
- output_file: str,
43
- current_data: dict,
44
- column_names: list,
45
- ) -> None:
46
- """
47
- Writes a new row of data to a CSV file.
48
-
49
- Args:
50
- output_file (str): The path to the output CSV file.
51
- current_data (dict): A dictionary containing the data to be written.
52
- column_names (list): A list of column names in the desired order.
53
-
54
- Returns:
55
- None
56
- """
57
- # Extract data in the specified order based on column names
58
- data_row = [current_data[column] for column in column_names]
59
-
60
- # Write the data row to the CSV file
61
- write_to_csv(output_file, data_row)
62
-
63
-
64
- def write_to_csv(filename: str, row_data: list) -> None:
65
- """
66
- Appends a row of data to a CSV file.
67
-
68
- Args:
69
- filename (str): The name of the CSV file.
70
- row_data: A list of values to be written as a row.
71
-
72
- Returns:
73
- None
74
- """
75
- # Open the CSV file in append mode, creating it if it doesn't exist
76
- with open(filename, "a+", encoding="UTF8", newline="") as file:
77
- writer = csv.writer(file)
78
- writer.writerow(row_data)
79
-
80
-
81
- def count_csv_lines(filename: str) -> int:
82
- """Counts the number of lines in a CSV file, excluding the header row.
83
-
84
- Args:
85
- filename (str): The path to the CSV file.
86
-
87
- Returns:
88
- int: The number of lines in the CSV file, excluding the header row.
89
- """
90
- file_data = pd.read_csv(filename, sep=",").values
91
- return len(file_data)
92
-
93
-
94
- def read_csv_data(input_file: str) -> np.ndarray:
95
- """
96
- Reads data from a specified CSV file.
97
-
98
- Args:
99
- file_path (str): The path to the CSV file.
100
-
101
- Returns:
102
- numpy.ndarray: The data from the CSV file.
103
- """
104
- file_data = pd.read_csv(
105
- input_file,
106
- dtype="string",
107
- keep_default_na=False,
108
- sep=",",
109
- ).values
110
- return file_data
111
-
112
-
113
- def get_column(input_file: str, column_name: str) -> np.ndarray:
114
- """
115
- Retrieves a specific column from a CSV file as a NumPy array.
116
-
117
- Args:
118
- input_file (str): The path to the CSV file.
119
- column_name (str): The name of the column to extract.
120
-
121
- Returns:
122
- np.ndarray: Values from the specified column.
123
- """
124
- # Read CSV, preserving string data types and handling missing values
125
- df = pd.read_csv(
126
- input_file,
127
- dtype="string",
128
- keep_default_na=False,
129
- sep=",",
130
- )
131
-
132
- # Extract the specified column as a NumPy array
133
- column_data = df[column_name].values
134
- return column_data
135
-
136
-
137
- def generate_column_names(categories: list) -> list:
138
- """
139
- Generates column names for a pairwise comparison matrix.
140
-
141
- Args:
142
- categories (list): A list of categories.
143
-
144
- Returns:
145
- list: A list of column names,
146
- including a 'human' column and pairwise combinations.
147
- """
148
- column_names = ["human"]
149
-
150
- # Add individual category names as column names
151
- column_names.extend(categories)
152
-
153
- # Add pairwise combinations of categories as column names
154
- for i in categories:
155
- for j in categories:
156
- column_names.append(f"{i}_{j}")
157
-
158
- # TODO: improve?
159
- # for i in range(len(categories)):
160
- # for j in range(i + 1, len(categories)):
161
- # column_names.append(f"{categories[i]}_{categories[j]}")
162
-
163
- return column_names
164
-
165
-
166
- def normalize_text(input_text: str) -> str:
167
- """
168
- Normalizes the given text by removing unnecessary characters and
169
- formatting it for better readability.
170
-
171
- Args:
172
- input_text (str): The input text to be normalized.
173
-
174
- Returns:
175
- The normalized text.
176
-
177
- This function performs the following transformations:
178
- 1. Strips leading and trailing whitespace
179
- 2. Removes double asterisks (`**`)
180
- 3. Replaces newlines with spaces
181
- 4. Removes extra spaces
182
- """
183
- processed_text = input_text.strip()
184
- processed_text = processed_text.replace("**", "")
185
- processed_text = processed_text.replace("\n", " ")
186
- processed_text = processed_text.replace(" ", " ") # Remove extra spaces
187
- # TODO: what if 3 or more spaces
188
- return processed_text
189
-
190
-
191
- def refine_candidate_text(input_text: str, candidate_text: str) -> str:
192
- # TODO: how different with processing text
193
- """
194
- Removes specific surrounding marks from the candidate text if they are
195
- present in the input text with an excess of exactly two occurrences.
196
-
197
- Args:
198
- input_text (str): The original text.
199
- candidate (str): The candidate text to be refined.
200
-
201
- Returns:
202
- str: The refined candidate text.
203
- """
204
-
205
- # Create a copy of the candidate string and strip whitespace
206
- refined_candidate = candidate_text.strip()
207
-
208
- # Iterate through each mark
209
- for mark in ["```", "'", '"']:
210
- # Count occurrences of the mark in input_text and refined_candidate
211
- count_input_text = input_text.count(mark)
212
- count_refined_candidate = refined_candidate.count(mark)
213
-
214
- # Check if the mark should be stripped
215
- if (
216
- count_refined_candidate == count_input_text + 2
217
- and refined_candidate.startswith(mark)
218
- and refined_candidate.endswith(mark)
219
- ):
220
- # Strip the mark from both ends of the refined_candidate
221
- refined_candidate = refined_candidate.strip(mark)
222
-
223
- return refined_candidate
224
-
225
-
226
- def generate_file_name(
227
- existing_data_file: str,
228
- existing_kinds: list,
229
- new_kinds: list,
230
- ) -> str:
231
- """
232
- Generates a new file name based on the path of an existing data file and a
233
- combination of existing and new kinds.
234
-
235
- Args:
236
- existing_data_file (str): The path to the existing data file.
237
- existing_kinds (list): A list of existing kinds.
238
- new_kinds (list): A list of new kinds.
239
-
240
- Returns:
241
- str: The generated file name with the full path.
242
- """
243
-
244
- # Combine existing and new kinds into a single list
245
- combined_kinds = existing_kinds + new_kinds
246
-
247
- # Get the directory path of the existing data file
248
- directory_path = os.path.dirname(existing_data_file)
249
-
250
- # Create a new file name by joining the kinds with underscores and adding
251
- # a suffix
252
- # TODO: move to config file
253
- new_file_name = "_".join(combined_kinds) + "_with_best_similarity.csv"
254
-
255
- # Combine the directory path with the new file name to get the full output
256
- # file path
257
- output_file_path = os.path.join(directory_path, new_file_name)
258
-
259
- return output_file_path
260
-
261
-
262
- def shuffle(data: list[list], seed: int) -> None:
263
- """
264
- Shuffles the elements within each sublist of the given data structure.
265
-
266
- Args:
267
- data (list of lists): The array containing sublists to shuffle.
268
- seed (int): The seed value for the random number generator.
269
-
270
- Returns:
271
- None
272
- """
273
- for sublist in data:
274
- random.Random(seed).shuffle(sublist)
275
-
276
-
277
- def generate_human_with_shuffle(
278
- dataset_name: str,
279
- column_name: str,
280
- num_samples: int,
281
- output_file: str,
282
- ) -> None:
283
- """
284
- Generates a shuffled list of sentences from the dataset and writes them to
285
- a CSV file.
286
-
287
- Args:
288
- dataset_name (str): The name of the dataset to load.
289
- column_name (str): The column name to extract sentences from.
290
- num_samples (int): The number of samples to process.
291
- output_file (str): The path to the output CSV file.
292
-
293
- Returns:
294
- None
295
- """
296
- # Load the dataset
297
- dataset = load_dataset(dataset_name)
298
- data = dataset["train"]
299
-
300
- lines = []
301
- # Tokenize sentences and add to the lines list
302
- for sample in data:
303
- nltk_tokens = nltk.sent_tokenize(sample[column_name])
304
- lines.extend(nltk_tokens)
305
-
306
- # Filter out empty lines
307
- filtered_lines = [line for line in lines if line != ""]
308
- lines = filtered_lines
309
-
310
- # Shuffle the lines
311
- shuffle([lines], seed=SEED)
312
-
313
- # Ensure the output file exists and write the header if it doesn't
314
- if not os.path.exists(output_file):
315
- header = ["human"]
316
- write_to_csv(output_file, header)
317
-
318
- # Get the number of lines already processed in the output file
319
- number_of_processed_lines = count_csv_lines(output_file)
320
-
321
- # Print the initial lines to be processed
322
- print(f"Lines before processing: {lines[:num_samples]}")
323
-
324
- # Slice the lines list to get the unprocessed lines
325
- lines = lines[number_of_processed_lines:num_samples]
326
-
327
- # Print the lines after slicing
328
- print(f"Lines after slicing: {lines}")
329
-
330
- # Process each line and write to the output file
331
- for index, human in enumerate(lines):
332
- normalized_text = normalize_text(human)
333
- output_data = [normalized_text]
334
- write_to_csv(output_file, output_data)
335
- print(
336
- f"Processed {index + 1} / {len(lines)};\
337
- Total processed:\
338
- {number_of_processed_lines + index + 1} / {num_samples}",
339
- )
340
-
341
-
342
- def split_data(data: list, train_ratio: float) -> list[list, list]:
343
- """
344
- Splits a dataset into training and testing sets.
345
-
346
- Args:
347
- data (list): The input dataset.
348
- train_ratio (float): The proportion of data to use for training.
349
-
350
- Returns:
351
- The training and testing sets.
352
- """
353
-
354
- # Calculate the number of samples for training
355
- train_size = int(len(data) * train_ratio)
356
-
357
- # Split the data into training and testing sets
358
- train_data = data[:train_size]
359
- test_data = data[train_size:]
360
-
361
- return train_data, test_data
362
-
363
-
364
- def combine_text_with_BERT_format(text_list: list[str]) -> str:
365
- """
366
- Formats a list of texts into a single string suitable for BERT input.
367
-
368
- Args:
369
- text_list (list[str]): A list of text strings.
370
-
371
- Returns:
372
- str: A single string formatted with BERT's special tokens.
373
- """
374
- # TODO: simplify this function
375
- # combined_text = f"<s>{text_list[0]}</s>"
376
- # for i in range(1, len(text_list)):
377
- # combined_text += f"</s>{text_list[i]}</s>"
378
- # return combined_text
379
-
380
- formatted_text = "<s>" + "</s><s>".join(text_list) + "</s>"
381
- return formatted_text
382
-
383
-
384
- def check_api_error(data: list):
385
- """
386
- Checks if the given data contains an API error or an indication to ignore
387
- an API error.
388
-
389
- Args:
390
- data (list): A list of items to check.
391
-
392
- Returns:
393
- bool: True if an API error or ignore indication is found,
394
- False otherwise.
395
- """
396
- for item in data:
397
- # Check for API error indicators
398
- if item in (API_ERROR, IGNORE_BY_API_ERROR):
399
- return True # Return True if at least an error indicator is found
400
- return False # Return False if no error indicators are found
401
-
402
-
403
- def calculate_required_models(num_columns: int) -> int:
404
- """
405
- Calculates the minimum number of models required to generate the specified number of columns.
406
-
407
- Args:
408
- num_columns (int): The total number of columns to generate.
409
-
410
- Returns:
411
- int: The minimum number of models required.
412
-
413
- Raises:
414
- ValueError: If the number of columns cannot be achieved with the current model configuration.
415
- """
416
-
417
- num_models = 0
418
- count_human = 1 # Initial count representing human input
419
-
420
- # TODO: simplify this function
421
- while True:
422
- count_single = num_models # Single model count
423
- count_pair = num_models * num_models # Pair model count
424
-
425
- total_count = count_human + count_single + count_pair
426
-
427
- if total_count == num_columns:
428
- return num_models
429
- elif total_count > num_columns:
430
- raise Exception(
431
- "Cannot calculate the number of models to match the number of columns", # noqa: E501
432
- )
433
-
434
- num_models += 1
435
-
436
-
437
- def parse_multimodal_data(multimodel_csv_file: list) -> list:
438
- """
439
- Parses multimodal data from a CSV file into a structured format.
440
-
441
- Args:
442
- multimodel_csv_file (str): Path to the CSV file.
443
-
444
- Returns:
445
- list: A list of dictionaries, each containing 'human', 'single', and
446
- 'pair' keys.
447
-
448
- Raises:
449
- Exception: If there is an error in reading the CSV file or processing
450
- the data.
451
- """
452
- # TODO: simplify this function
453
-
454
- # Read CSV data into a list of lists
455
- input_data = read_csv_data(multimodel_csv_file)
456
-
457
- # Initialize the result list
458
- structured_data = []
459
-
460
- # Calculate the number of models based on the number of columns in the first row # noqa: E501
461
- num_models = calculate_required_models(len(input_data[0]))
462
-
463
- # Process each row in the input data
464
- for row in input_data:
465
- row_data = {}
466
- index = 0
467
-
468
- # Extract human data
469
- row_data["human"] = row[index]
470
- index += 1
471
-
472
- # Extract single model data
473
- single_model_data = []
474
- for _ in range(num_models):
475
- single_model_data.append(row[index])
476
- index += 1
477
- row_data["single"] = single_model_data
478
-
479
- # Extract pair model data
480
- pair_model_data = []
481
- for _ in range(num_models):
482
- sub_pair_data = []
483
- for _ in range(num_models):
484
- sub_pair_data.append(row[index])
485
- index += 1
486
- pair_model_data.append(sub_pair_data)
487
- row_data["pair"] = pair_model_data
488
-
489
- # Append the structured row data to the result list
490
- structured_data.append(row_data)
491
-
492
- return structured_data
493
-
494
-
495
- def check_error(data_item: dict) -> bool:
496
- """
497
- Checks if the given data item contains any API errors.
498
- An API error is indicated by a specific error message
499
- or code within the text.
500
-
501
- Args:
502
- data_item (dict): A dictionary containing 'human', 'single',
503
- and 'pair' fields.
504
-
505
- Returns:
506
- bool: True if an API error is found, otherwise False.
507
- """
508
- # Check for API error in the 'human' field
509
- if check_api_error(data_item["human"]):
510
- return True
511
-
512
- # Check for API error in the 'single' model data
513
- for single_text in data_item["single"]:
514
- if check_api_error(single_text):
515
- return True
516
-
517
- # Get the number of models from the 'single' model data
518
- num_models = len(data_item["single"])
519
-
520
- # Check for API error in the 'pair' model data
521
- for i in range(num_models):
522
- for j in range(num_models):
523
- if check_api_error(data_item["pair"][i][j]):
524
- return True
525
-
526
- # No errors found
527
- return False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/SimLLM.py DELETED
@@ -1,1667 +0,0 @@
1
-
2
- import os
3
- import shutil
4
- import random
5
- import pandas as pd
6
- import numpy as np
7
- import nltk
8
- import google.generativeai as genai
9
- import csv
10
- from transformers import (
11
- AutoTokenizer,
12
- DataCollatorWithPadding,
13
- AutoModelForSequenceClassification,
14
- EarlyStoppingCallback,
15
- TrainerCallback,
16
- TrainingArguments,
17
- Trainer
18
- )
19
- from openai import OpenAI
20
- from sklearn.neural_network import MLPClassifier
21
- from sklearn.metrics import roc_auc_score, accuracy_score
22
- from os.path import join
23
- from langchain.chat_models import ChatOpenAI
24
- from datasets import load_metric, load_dataset, Dataset
25
- from copy import deepcopy
26
- from bart_score import BARTScorer
27
- import argparse
28
-
29
- # Constants
30
- TOGETHER_API_KEY = "your_together_api_key"
31
- OPENAI_API_KEY = "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"
32
- GEMINI_API_KEY = "your_gemini_key"
33
- LOG_FILE = "data/99_log.txt"
34
- OUTPUT_FILE = "data/result.txt"
35
- METRIC_NAME = "roc_auc"
36
-
37
- TRAIN_RATIO = 0.8
38
- VAL_RATIO = 0.1
39
- NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING = 10
40
- PATIENCE = 3
41
- BATCH_SIZE = 8
42
- OPTIMIZED_METRIC = "roc_auc"
43
- SEED = 0
44
- TEMPERATURE = 0.0
45
- IS_OUTPUT_NORMALIZATION = False
46
- RATIO = 0.9
47
- HUMAN_LABEL = 0
48
- MACHINE_LABEL = 1
49
- BART = "bart"
50
-
51
- MULTIMODEL = "multimodel"
52
- SINGLE_FROM_MULTIMODEL = "single_from_multimodel"
53
-
54
- # Environment setup
55
- os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
56
- os.environ['CURL_CA_BUNDLE'] = ''
57
- os.environ['REQUESTS_CA_BUNDLE'] = ''
58
-
59
- # Download necessary NLTK data
60
- nltk.download('punkt')
61
- nltk.download('punkt_tab')
62
-
63
- # Chat model configurations
64
- chat_model = ChatOpenAI(temperature=TEMPERATURE, model_name="gpt-3.5-turbo-0125")
65
-
66
- # API Models and Paths
67
- CHATGPT = "ChatGPT"
68
- GEMINI = "Gemini"
69
- # LLAMA_2_70_CHAT_TEMP_0 = "LLaMa"
70
- API_ERROR = "API_ERROR"
71
- IGNORE_BY_API_ERROR = "IGNORE_BY_API_ERROR"
72
-
73
- # Initialize BARTScorer
74
- bart_scorer = BARTScorer(device='cuda:0', checkpoint="facebook/bart-large-cnn")
75
-
76
- # Generative AI configuration
77
- genai.configure(api_key=GEMINI_API_KEY, transport='rest')
78
- generation_config = {
79
- "temperature": TEMPERATURE,
80
- }
81
- GEMINI_MODEL = genai.GenerativeModel('gemini-pro', generation_config=generation_config)
82
-
83
- # Model paths
84
- MODEL_PATHS = {
85
- "LLaMa": "meta-llama/Llama-2-70b-chat-hf",
86
- "QWEN": "Qwen/Qwen1.5-72B-Chat",
87
- "Yi": "NousResearch/Nous-Hermes-2-Yi-34B",
88
- "Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1",
89
- "OLMo": "allenai/OLMo-7B-Instruct",
90
- "Phi": "microsoft/phi-2",
91
- "OpenChat": "openchat/openchat-3.5-1210",
92
- "WizardLM": "WizardLM/WizardLM-13B-V1.2",
93
- "Vicuna": "lmsys/vicuna-13b-v1.5"
94
- }
95
-
96
- TOGETHER_PATH ='https://api.together.xyz'
97
-
98
- # Roberta model configurations
99
- ROBERTA_BASE = "roberta-base"
100
- ROBERTA_LARGE = "roberta-large"
101
- ROBERTA_MODEL_PATHS = {
102
- ROBERTA_BASE: "roberta-base",
103
- ROBERTA_LARGE: "roberta-large"
104
- }
105
- LEARNING_RATES = {
106
- ROBERTA_BASE: 2e-5,
107
- ROBERTA_LARGE: 8e-6
108
- }
109
- MODEL_NAME = ROBERTA_BASE
110
-
111
-
112
-
113
- # Tokenizer initialization
114
- tokenizer = AutoTokenizer.from_pretrained(ROBERTA_MODEL_PATHS[MODEL_NAME])
115
-
116
- # Custom callback for Trainer
117
- class CustomCallback(TrainerCallback):
118
- """
119
- Custom callback to evaluate the training dataset at the end of each epoch.
120
- """
121
- def __init__(self, trainer) -> None:
122
- super().__init__()
123
- self._trainer = trainer
124
-
125
- def on_epoch_end(self, args, state, control, **kwargs):
126
- """
127
- At the end of each epoch, evaluate the training dataset.
128
- """
129
- if control.should_evaluate:
130
- control_copy = deepcopy(control)
131
- self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="train")
132
- return control_copy
133
-
134
- # Metric loading
135
- metric = load_metric(METRIC_NAME)
136
-
137
- def compute_metrics(evaluation_predictions):
138
- """
139
- Function to compute evaluation metrics for model predictions.
140
-
141
- Parameters:
142
- evaluation_predictions (tuple): A tuple containing two elements:
143
- - predictions (array-like): The raw prediction scores from the model.
144
- - labels (array-like): The true labels for the evaluation data.
145
-
146
- Returns:
147
- dict: A dictionary containing the computed evaluation metrics.
148
- """
149
- # Unpack predictions and labels from the input tuple
150
- raw_predictions, true_labels = evaluation_predictions
151
-
152
- # Convert raw prediction scores to predicted class labels
153
- predicted_labels = np.argmax(raw_predictions, axis=1)
154
-
155
- # Compute and return the evaluation metrics
156
- return metric.compute(prediction_scores=predicted_labels, references=true_labels, average="macro")
157
-
158
-
159
- def abstract_proofread(model_path, temperature, base_url, api_key, prompt):
160
- """
161
- Function to proofread an abstract using an AI language model.
162
-
163
- Parameters:
164
- model_path (str): The path or identifier of the AI model to use.
165
- temperature (float): Sampling temperature for the model's output.
166
- base_url (str): The base URL for the API endpoint.
167
- api_key (str): The API key for authentication.
168
- prompt (str): The text prompt to provide to the AI for proofreading.
169
-
170
- Returns:
171
- str: The proofread abstract generated by the AI model.
172
- """
173
- # Initialize the AI client with the provided API key and base URL
174
- ai_client = OpenAI(api_key=api_key, base_url=base_url)
175
-
176
- # Create a chat completion request with the system message and user prompt
177
- chat_completion = ai_client.chat.completions.create(
178
- messages=[
179
- {
180
- "role": "system",
181
- "content": "You are an AI assistant",
182
- },
183
- {
184
- "role": "user",
185
- "content": prompt,
186
- }
187
- ],
188
- model=model_path,
189
- max_tokens=1024,
190
- temperature=temperature,
191
- )
192
-
193
- # Return the content of the first choice's message
194
- return chat_completion.choices[0].message.content
195
-
196
-
197
-
198
- def proofread_by_model_name(model_name, input_text, normalize_output):
199
- """
200
- Proofreads the given input text using the specified model.
201
-
202
- Args:
203
- model_name (str): The name of the model to use for proofreading.
204
- input_text (str): The text to be proofread.
205
- normalize_output (bool): Whether to normalize the output or not.
206
-
207
- Returns:
208
- str: The proofread text.
209
- """
210
- # Constants for API access
211
- base_url = TOGETHER_PATH
212
- api_key = TOGETHER_API_KEY
213
- temperature = TEMPERATURE
214
-
215
- # Retrieve the model path from the dictionary
216
- if model_name in MODEL_PATHS:
217
- model_path = MODEL_PATHS[model_name]
218
- else:
219
- raise ValueError("Model name not found in the dictionary.")
220
-
221
- # Formulate the prompt for the model
222
- prompt = f"Proofreading for the text: ```{input_text}```"
223
-
224
- # Apply output normalization if required
225
- if normalize_output:
226
- prompt = output_normalization(prompt)
227
-
228
- # Debugging: Print the prompt
229
- print(f"Prompt: {prompt}")
230
-
231
- # Call the abstract proofreading function with the prepared parameters
232
- return abstract_proofread(model_path, temperature, base_url, api_key, prompt)
233
-
234
-
235
- def gemini_proofread(input_text, normalize_output):
236
- """
237
- Proofreads the given text using the GEMINI_MODEL.
238
-
239
- Parameters:
240
- input_text (str): The text to be proofread.
241
- normalize_output (bool): Flag indicating whether to normalize the output.
242
-
243
- Returns:
244
- str: The proofread text.
245
- """
246
- prompt = f"Proofreading for the text: ```{input_text}```"
247
- if normalize_output:
248
- prompt = output_normalization(prompt)
249
- response = GEMINI_MODEL.generate_content(prompt)
250
- return response.text
251
-
252
- def print_and_log(message):
253
- """
254
- Prints and logs the given message to a log file.
255
-
256
- Parameters:
257
- message (str): The message to be printed and logged.
258
- """
259
- print(message)
260
- with open(LOG_FILE, "a+", encoding='utf-8') as log_file:
261
- log_file.write(message + "\n")
262
-
263
- def write_to_file(filename, content):
264
- """
265
- Writes the given content to a specified file.
266
-
267
- Parameters:
268
- filename (str): The name of the file to write to.
269
- content (str): The content to be written.
270
- """
271
- print(content)
272
- with open(filename, "a+", encoding='utf-8') as file:
273
- file.write(content)
274
-
275
- def output_normalization(prompt):
276
- """
277
- Normalizes the output by appending a specific instruction to the prompt.
278
-
279
- Parameters:
280
- prompt (str): The initial prompt.
281
-
282
- Returns:
283
- str: The modified prompt.
284
- """
285
- return prompt + " Please only output the proofread text without any explanation."
286
-
287
- def chatGPT_proofread(input_text, normalize_output):
288
- """
289
- Proofreads the given text using the chat_model.
290
-
291
- Parameters:
292
- input_text (str): The text to be proofread.
293
- normalize_output (bool): Flag indicating whether to normalize the output.
294
-
295
- Returns:
296
- str: The proofread text.
297
- """
298
- prompt = f"Proofreading for the text: ```{input_text}```"
299
- if normalize_output:
300
- prompt = output_normalization(prompt)
301
-
302
- print(f"Starting API call with prompt: {prompt}")
303
- result = chat_model.predict(prompt)
304
- print(f"Ending API call with prompt: {prompt}")
305
-
306
- return result
307
-
308
- def normalize_text(input_text):
309
- """
310
- Normalizes the given text by removing certain characters and extra spaces.
311
-
312
- Parameters:
313
- input_text (str): The text to be normalized.
314
-
315
- Returns:
316
- str: The normalized text.
317
- """
318
- result = input_text.strip()
319
- result = result.replace("**", "")
320
- result = result.replace("\n", " ")
321
- result = result.replace(" ", " ") # Remove extra spaces
322
- return result
323
-
324
- def write_to_csv(filename, row_data):
325
- """
326
- Writes a row of data to a specified CSV file.
327
-
328
- Parameters:
329
- filename (str): The name of the CSV file.
330
- row_data (list): The row data to be written.
331
- """
332
- with open(filename, 'a+', encoding='UTF8', newline='') as file:
333
- writer = csv.writer(file)
334
- writer.writerow(row_data)
335
-
336
- def number_of_csv_lines(filename):
337
- """
338
- Returns the number of lines in a specified CSV file.
339
-
340
- Parameters:
341
- filename (str): The name of the CSV file.
342
-
343
- Returns:
344
- int: The number of lines in the CSV file.
345
- """
346
- file_data = pd.read_csv(filename, sep=',').values
347
- return len(file_data)
348
-
349
- def read_csv_data(input_file):
350
- """
351
- Reads data from a specified CSV file.
352
-
353
- Parameters:
354
- input_file (str): The name of the CSV file.
355
-
356
- Returns:
357
- numpy.ndarray: The data read from the CSV file.
358
- """
359
- file_data = pd.read_csv(input_file, dtype='string', keep_default_na=False, sep=',').values
360
- return file_data
361
-
362
- def bart_score(text_1, text_2):
363
- """
364
- Computes the BART score between two texts.
365
-
366
- Parameters:
367
- text_1 (str): The first text.
368
- text_2 (str): The second text.
369
-
370
- Returns:
371
- float: The BART score.
372
- """
373
- score = bart_scorer.score([text_1], [text_2])
374
- return score
375
-
376
- def check_bart_score(input_text, raw_text):
377
- """
378
- Checks if the BART score between input_text and raw_text is above a threshold.
379
-
380
- Parameters:
381
- input_text (str): The input text.
382
- raw_text (str): The raw text to compare against.
383
-
384
- Returns:
385
- bool: True if the score is above the threshold, False otherwise.
386
- """
387
- THRESHOLD = -2.459
388
- normalized_text = normalize_text(raw_text)
389
- score = bart_score(input_text, normalized_text)[0]
390
- return score >= THRESHOLD
391
-
392
- def get_column(input_file, column_name):
393
- """
394
- Retrieves a specific column from a CSV file.
395
-
396
- Parameters:
397
- input_file (str): The name of the CSV file.
398
- column_name (str): The name of the column to retrieve.
399
-
400
- Returns:
401
- numpy.ndarray: The values from the specified column.
402
- """
403
- df = pd.read_csv(input_file, dtype='string', keep_default_na=False, sep=',')
404
- column_data = df[column_name]
405
- return column_data.values
406
-
407
- def generate_column_names(categories):
408
- """
409
- Generates a list of column names based on given categories.
410
-
411
- Parameters:
412
- categories (list): The list of categories.
413
-
414
- Returns:
415
- list: The generated list of column names.
416
- """
417
- column_names = ['human']
418
- for name in categories:
419
- column_names.append(name)
420
- for first in categories:
421
- for second in categories:
422
- column_names.append(f"{first}_{second}")
423
- return column_names
424
-
425
- def write_new_data(output_file, current_data, column_names):
426
- """
427
- Writes new data to a CSV file based on current data and column names.
428
-
429
- Parameters:
430
- output_file (str): The name of the output CSV file.
431
- current_data (dict): The current data to be written.
432
- column_names (list): The list of column names.
433
- """
434
- data_row = [current_data[column] for column in column_names]
435
- write_to_csv(output_file, data_row)
436
-
437
- def refine(input_text, candidate):
438
- """
439
- Refines the candidate string by removing specific surrounding marks if they are present
440
- in the input_text with a count difference of exactly 2.
441
-
442
- Args:
443
- input_text (str): The original text.
444
- candidate (str): The candidate text to be refined.
445
-
446
- Returns:
447
- str: The refined candidate text.
448
- """
449
-
450
- # Create a copy of the candidate string and strip whitespace
451
- refined_candidate = candidate.strip()
452
-
453
- # List of marks to check and potentially remove
454
- marks = ["```", "'", '"']
455
-
456
- # Iterate through each mark
457
- for mark in marks:
458
- # Count occurrences of the mark in input_text and refined_candidate
459
- count_input_text = input_text.count(mark)
460
- count_refined_candidate = refined_candidate.count(mark)
461
-
462
- # Check if the mark should be stripped
463
- if (count_refined_candidate == count_input_text + 2 and
464
- refined_candidate.startswith(mark) and
465
- refined_candidate.endswith(mark)):
466
- # Strip the mark from both ends of the refined_candidate
467
- refined_candidate = refined_candidate.strip(mark)
468
-
469
- return refined_candidate
470
-
471
-
472
- def extract_by_best_similarity(input_text, raw_text):
473
- """
474
- Extracts the best candidate string from the raw text based on the highest similarity score
475
- compared to the input text. The similarity score is calculated using the BART score.
476
-
477
- Args:
478
- input_text (str): The original text.
479
- raw_text (str): The raw text containing multiple candidate strings.
480
-
481
- Returns:
482
- str: The best candidate string with the highest similarity score.
483
- Returns the input text if no suitable candidate is found.
484
- """
485
-
486
- # Refine the raw text
487
- refined_raw_text = refine(input_text, raw_text)
488
-
489
- # Tokenize the refined raw text into sentences
490
- raw_candidates = nltk.sent_tokenize(refined_raw_text)
491
-
492
- # Split sentences further by newlines to get individual candidates
493
- candidate_list = []
494
- for sentence in raw_candidates:
495
- candidate_list.extend(sentence.split("\n"))
496
-
497
- # Initialize variables to track the best similarity score and the best candidate
498
- best_similarity = -9999
499
- best_candidate = ""
500
-
501
- # Iterate over each candidate to find the best one based on the BART score
502
- for candidate in candidate_list:
503
- refined_candidate = refine(input_text, candidate)
504
- if check_bart_score(input_text, refined_candidate):
505
- score = bart_score(input_text, refined_candidate)[0]
506
- if score > best_similarity:
507
- best_similarity = score
508
- best_candidate = refined_candidate
509
-
510
- # Print the best candidate found
511
- print(f"best_candidate = {best_candidate}")
512
-
513
- # Return the best candidate if found, otherwise return the input text
514
- if best_candidate == "":
515
- return input_text
516
- return best_candidate
517
-
518
- def proofread_with_best_similarity(input_text, model_kind):
519
- """
520
- Proofreads the input text using the specified model and extracts the best-corrected text based on similarity.
521
-
522
- Args:
523
- input_text (str): The original text to be proofread.
524
- model_kind (str): The kind of model to use for proofreading (e.g., CHATGPT, GEMINI).
525
-
526
- Returns:
527
- tuple: A tuple containing the raw proofread text and the best-corrected text.
528
- """
529
-
530
- # Normalize the input text
531
- normalized_input_text = normalize_text(input_text)
532
- print_and_log(f"INPUT = {normalized_input_text}")
533
-
534
- result_text = ""
535
- raw_text = ""
536
-
537
- for i in range(1): # Loop is redundant as it runs only once; consider removing if unnecessary
538
- # Select the proofreading model based on model_kind
539
- if model_kind == CHATGPT:
540
- raw_text = chatGPT_proofread(normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
541
- elif model_kind == GEMINI:
542
- raw_text = gemini_proofread(normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
543
- else:
544
- raw_text = proofread_by_model_name(model_kind, normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
545
-
546
- # Extract the best candidate text based on similarity
547
- result_text = extract_by_best_similarity(normalized_input_text, raw_text)
548
-
549
- # Log the raw and result texts
550
- print_and_log(f"RAW_{i} = {raw_text}")
551
- print_and_log(f"RESULT_{i} = {result_text}")
552
-
553
- # Normalize the result text
554
- result_text = normalize_text(result_text)
555
-
556
- # If a valid result is obtained, return it
557
- if result_text != "":
558
- return raw_text, result_text
559
-
560
- # Return the raw and result texts
561
- return raw_text, result_text
562
-
563
- def generate_file_name(existing_data_file, existing_kinds, new_kinds):
564
- """
565
- Generates a new file name based on the path of an existing data file and a combination of existing and new kinds.
566
-
567
- Args:
568
- existing_data_file (str): The path to the existing data file.
569
- existing_kinds (list): A list of existing kinds.
570
- new_kinds (list): A list of new kinds.
571
-
572
- Returns:
573
- str: The generated file name with the full path.
574
- """
575
-
576
- # Combine existing and new kinds into a single list
577
- combined_kinds = existing_kinds + new_kinds
578
-
579
- # Get the directory path of the existing data file
580
- directory_path = os.path.dirname(existing_data_file)
581
-
582
- # Create a new file name by joining the kinds with underscores and adding a suffix
583
- new_file_name = "_".join(combined_kinds) + "_with_best_similarity.csv"
584
-
585
- # Combine the directory path with the new file name to get the full output file path
586
- output_file_path = os.path.join(directory_path, new_file_name)
587
-
588
- return output_file_path
589
-
590
-
591
-
592
- def generate_new_data_with_best_similarity(existing_data_file, existing_kinds, new_kinds):
593
- """
594
- Generates new data with the best similarity based on existing and new kinds, and writes the results to a CSV file.
595
-
596
- Args:
597
- existing_data_file (str): The path to the existing data file.
598
- existing_kinds (list): A list of existing kinds.
599
- new_kinds (list): A list of new kinds.
600
-
601
- Returns:
602
- None
603
- """
604
-
605
- # Combine existing and new kinds into a single list
606
- all_kinds = existing_kinds + new_kinds
607
-
608
- # Generate column names for the CSV file
609
- column_names = generate_column_names(all_kinds)
610
-
611
- # Generate column names for existing kinds
612
- existing_column_names = generate_column_names(existing_kinds)
613
-
614
- # Generate the output file name
615
- output_file = generate_file_name(existing_data_file, existing_kinds, new_kinds)
616
-
617
- # Create the output file with column names if it doesn't exist
618
- if not os.path.exists(output_file):
619
- write_to_csv(output_file, column_names)
620
-
621
- # Read existing data from the file
622
- existing_data = {kind: get_column(existing_data_file, kind) for kind in existing_column_names}
623
-
624
- # Read input data from the output file
625
- input_data = read_csv_data(output_file)
626
- start_index = len(input_data)
627
- print(f"start_index = {start_index}")
628
-
629
- num_rows = len(existing_data["human"])
630
- global_generate_set = []
631
- global_reuse = []
632
-
633
- for index in range(start_index, num_rows):
634
- # Initialize generation and reuse sets
635
- generate_set = []
636
- reuse_set = []
637
-
638
- # Prepare the current generation dictionary
639
- current_generation = {kind: existing_data[kind][index] for kind in existing_column_names}
640
- print(f"current_generation before generation = {current_generation}")
641
-
642
- human_text = current_generation["human"]
643
-
644
- # Generate new kinds based on human text
645
- for kind in new_kinds:
646
- _, generated_text = proofread_with_best_similarity(human_text, kind)
647
- current_generation[kind] = generated_text
648
- generate_set.append(kind)
649
-
650
- print(f"current_generation after generate one = {current_generation}")
651
-
652
- # Generate combinations of kinds
653
- for first_kind in all_kinds:
654
- for second_kind in all_kinds:
655
- combination_name = f"{first_kind}_{second_kind}"
656
-
657
- if combination_name not in current_generation:
658
- if first_kind in current_generation and current_generation[first_kind] == human_text:
659
- generated_text = current_generation[second_kind]
660
- reuse_set.append(f"{combination_name} from {second_kind}")
661
- else:
662
- is_need_generation = True
663
- for first_kind_2 in all_kinds:
664
- if first_kind != first_kind_2 and current_generation[first_kind] == current_generation[first_kind_2]:
665
- combination_name_2 = f"{first_kind_2}_{second_kind}"
666
- if combination_name_2 in current_generation:
667
- generated_text = current_generation[combination_name_2]
668
- reuse_set.append(f"{combination_name} from {combination_name_2}")
669
- is_need_generation = False
670
- break
671
- if is_need_generation:
672
- _, generated_text = proofread_with_best_similarity(current_generation[first_kind], second_kind)
673
- generate_set.append(f"{first_kind}_{second_kind}")
674
-
675
- current_generation[combination_name] = generated_text
676
-
677
- # Write the current generation to the output file
678
- write_new_data(output_file, current_generation, column_names)
679
-
680
- # Update global sets
681
- global_generate_set.append(generate_set)
682
- global_reuse
683
-
684
- def shuffle(array, seed):
685
- """
686
- Shuffles the elements of each sublist in the given array using the specified seed.
687
-
688
- Args:
689
- array (list of lists): The array containing sublists to shuffle.
690
- seed (int): The seed value for the random number generator.
691
-
692
- Returns:
693
- None
694
- """
695
- for sublist in array:
696
- random.Random(seed).shuffle(sublist)
697
-
698
- def generate_human_with_shuffle(dataset_name, column_name, num_samples, output_file):
699
- """
700
- Generates a shuffled list of sentences from the dataset and writes them to a CSV file.
701
-
702
- Args:
703
- dataset_name (str): The name of the dataset to load.
704
- column_name (str): The column name to extract sentences from.
705
- num_samples (int): The number of samples to process.
706
- output_file (str): The path to the output CSV file.
707
-
708
- Returns:
709
- None
710
- """
711
- # Load the dataset
712
- dataset = load_dataset(dataset_name)
713
- data = dataset['train']
714
-
715
- lines = []
716
- # Tokenize sentences and add to the lines list
717
- for sample in data:
718
- nltk_tokens = nltk.sent_tokenize(sample[column_name])
719
- lines.extend(nltk_tokens)
720
-
721
- # Filter out empty lines
722
- filtered_lines = [line for line in lines if line != ""]
723
- lines = filtered_lines
724
-
725
- # Shuffle the lines
726
- shuffle([lines], seed=SEED)
727
-
728
- # Ensure the output file exists and write the header if it doesn't
729
- if not os.path.exists(output_file):
730
- header = ["human"]
731
- write_to_csv(output_file, header)
732
-
733
- # Get the number of lines already processed in the output file
734
- number_of_processed_lines = number_of_csv_lines(output_file)
735
-
736
- # Print the initial lines to be processed
737
- print(f"Lines before processing: {lines[:num_samples]}")
738
-
739
- # Slice the lines list to get the unprocessed lines
740
- lines = lines[number_of_processed_lines:num_samples]
741
-
742
- # Print the lines after slicing
743
- print(f"Lines after slicing: {lines}")
744
-
745
- # Process each line and write to the output file
746
- for index, human in enumerate(lines):
747
- normalized_text = normalize_text(human)
748
- output_data = [normalized_text]
749
- write_to_csv(output_file, output_data)
750
- print(f"Processed {index + 1} / {len(lines)}; Total processed: {number_of_processed_lines + index + 1} / {num_samples}")
751
-
752
-
753
- def split(data, ratio):
754
- """
755
- Splits the data into training and testing sets based on the given ratio.
756
-
757
- Args:
758
- data (list): The dataset to split.
759
- ratio (float): The ratio for splitting the data into training and testing sets.
760
-
761
- Returns:
762
- tuple: A tuple containing the training data and the testing data.
763
- """
764
- train_size = int(len(data) * ratio)
765
- train_data = data[:train_size]
766
- test_data = data[train_size:]
767
- return train_data, test_data
768
-
769
- def bart_score_in_batch(text_1, text_2):
770
- """
771
- Calculates the BART score for pairs of texts in batches.
772
-
773
- Args:
774
- text_1 (list of str): The first list of texts.
775
- text_2 (list of str): The second list of texts.
776
-
777
- Returns:
778
- list: A list of BART scores for each pair of texts.
779
- """
780
- return bart_scorer.score(text_1, text_2, batch_size=BATCH_SIZE)
781
-
782
- def extract_feature_in_batch(text_1, text_2, feature_kind):
783
- """
784
- Extracts features for pairs of texts using BART scores.
785
-
786
- Args:
787
- text_1 (list of str): The first list of texts.
788
- text_2 (list of str): The second list of texts.
789
- feature_kind (str): The type of feature to extract.
790
-
791
- Returns:
792
- list: A list of extracted features.
793
- """
794
- features = bart_score_in_batch(text_1, text_2)
795
- return features
796
-
797
- def abstract_train(features, labels):
798
- """
799
- Trains a model using the given features and labels.
800
-
801
- Args:
802
- features (list): The input features for training.
803
- labels (list): The target labels for training.
804
-
805
- Returns:
806
- object: The trained model.
807
- """
808
- model = MLPClassifier()
809
- model.fit(features, labels)
810
- return model
811
-
812
- def evaluate_model(model, features, labels):
813
- """
814
- Evaluates the model's performance using accuracy and ROC AUC scores.
815
-
816
- Args:
817
- model (object): The trained model to evaluate.
818
- features (list): The input features for evaluation.
819
- labels (list): The target labels for evaluation.
820
-
821
- Returns:
822
- None
823
- """
824
- predictions = model.predict(features)
825
- rounded_predictions = [round(value) for value in predictions]
826
-
827
- accuracy = accuracy_score(labels, rounded_predictions)
828
- write_to_file(OUTPUT_FILE, f"Accuracy: {accuracy * 100.0:.1f}%\n")
829
-
830
- roc_auc = roc_auc_score(labels, rounded_predictions)
831
- write_to_file(OUTPUT_FILE, f"ROC AUC: {roc_auc * 100.0:.1f}%\n")
832
-
833
- def combine_text_with_BERT_format(text_list):
834
- """
835
- Combines a list of texts into a single string formatted for BERT input.
836
-
837
- Args:
838
- text_list (list of str): The list of texts to combine.
839
-
840
- Returns:
841
- str: The combined text string formatted for BERT input.
842
- """
843
- combined_text = f"<s>{text_list[0]}</s>"
844
- for i in range(1, len(text_list)):
845
- combined_text += f"</s>{text_list[i]}</s>"
846
- return combined_text
847
-
848
-
849
- def preprocess_function_multimodel(sample):
850
- """
851
- Preprocesses a given sample for a multi-model setup by calculating BART scores
852
- and formatting the text for BERT input.
853
-
854
- Args:
855
- sample (dict): A dictionary containing a key "text", which is a list of lists of strings.
856
-
857
- Returns:
858
- dict: A dictionary containing tokenized and preprocessed text data.
859
- """
860
- num_texts = len(sample["text"][0]) # Number of texts in each sub-sample
861
- texts_grouped_by_index = [[] for _ in range(num_texts)] # Initialize empty lists for grouping texts by index
862
-
863
- # Group texts by their index across sub-samples
864
- for sub_sample in sample["text"]:
865
- for i in range(num_texts):
866
- texts_grouped_by_index[i].append(sub_sample[i])
867
-
868
- # Calculate BART scores for each text pair (text[0] with text[i])
869
- bart_scores = [bart_score_in_batch(texts_grouped_by_index[0], texts_grouped_by_index[i]) for i in range(1, num_texts)]
870
-
871
- combined_texts = []
872
-
873
- # Process each sub-sample for BERT input
874
- for index, sub_sample in enumerate(sample["text"]):
875
- text_array = [sub_sample[0]] # Start with the input text
876
- score_generation_pairs = []
877
-
878
- # Pair scores with their corresponding generations
879
- for i in range(1, num_texts):
880
- generation_text = sub_sample[i]
881
- generation_score = bart_scores[i-1][index]
882
- score_generation_pairs.append((generation_score, generation_text))
883
-
884
- # Sort pairs by score in descending order
885
- sorted_pairs = sorted(score_generation_pairs, reverse=True)
886
-
887
- # Append sorted texts to text_array
888
- for _, sorted_text in sorted_pairs:
889
- text_array.append(sorted_text)
890
-
891
- # Combine texts into a single BERT-formatted string
892
- combined_text = combine_text_with_BERT_format(text_array)
893
- combined_texts.append(combined_text)
894
-
895
- # Tokenize the combined texts for BERT
896
- return tokenizer(combined_texts, add_special_tokens=False, truncation=True)
897
-
898
- def preprocess_function_single_from_multimodel(sample):
899
- """
900
- Extracts the first text from each sub-sample in a multi-model sample and tokenizes it.
901
-
902
- Args:
903
- sample (dict): A dictionary containing a key "text", which is a list of lists of strings.
904
-
905
- Returns:
906
- dict: A dictionary containing tokenized text data.
907
- """
908
- combined_texts = []
909
-
910
- # Iterate through each sub-sample
911
- for sub_sample in sample["text"]:
912
- input_text = sub_sample[0] # Extract the first text from the sub-sample
913
- combined_texts.append(input_text) # Append it to the list of combined texts
914
-
915
- # Tokenize the combined texts
916
- return tokenizer(combined_texts, truncation=True)
917
-
918
-
919
- def check_api_error(data):
920
- """
921
- Checks if any item in the provided data indicates an API error.
922
-
923
- Args:
924
- data (list): A list of items to be checked for API errors.
925
-
926
- Returns:
927
- bool: True if an API error or ignore by API error is found, otherwise False.
928
- """
929
- for item in data:
930
- if item == API_ERROR or item == IGNORE_BY_API_ERROR: # Check for API error indicators
931
- return True # Return True if an error indicator is found
932
- return False # Return False if no error indicators are found
933
-
934
-
935
- def train_only_by_transformer_with_test_evaluation_early_stop(train_data, test_data, input_type, num_classes=2):
936
- """
937
- Trains a transformer model using the provided training and testing datasets with early stopping.
938
-
939
- Args:
940
- train_data (Dataset): The training dataset.
941
- test_data (Dataset): The testing dataset.
942
- input_type (str): The type of input data, either MULTIMODEL or SINGLE_FROM_MULTIMODEL.
943
- num_classes (int, optional): The number of classes for classification. Defaults to 2.
944
-
945
- Returns:
946
- Trainer: The trained model wrapped in a Trainer object.
947
- """
948
- # Preprocess datasets based on the input type
949
- if input_type == MULTIMODEL:
950
- train_data = train_data.map(preprocess_function_multimodel, batched=True)
951
- test_data = test_data.map(preprocess_function_multimodel, batched=True)
952
- elif input_type == SINGLE_FROM_MULTIMODEL:
953
- train_data = train_data.map(preprocess_function_single_from_multimodel, batched=True)
954
- test_data = test_data.map(preprocess_function_single_from_multimodel, batched=True)
955
-
956
- # Data collator to pad inputs
957
- data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
958
-
959
- # Load appropriate model based on number of classes
960
- if num_classes == 3:
961
- model = AutoModelForSequenceClassification.from_pretrained(
962
- "pretrained_model/roberta-base_num_labels_3", num_labels=num_classes)
963
- else:
964
- model = AutoModelForSequenceClassification.from_pretrained(
965
- ROBERTA_MODEL_PATHS[MODEL_NAME], num_labels=num_classes)
966
-
967
- learning_rate = LEARNING_RATES[MODEL_NAME]
968
- output_folder = "training_with_callbacks"
969
-
970
- # Remove the output folder if it already exists
971
- if os.path.exists(output_folder):
972
- shutil.rmtree(output_folder)
973
-
974
- # Training arguments
975
- training_args = TrainingArguments(
976
- output_dir=output_folder,
977
- evaluation_strategy="epoch",
978
- logging_strategy="epoch",
979
- save_strategy="epoch",
980
- learning_rate=learning_rate,
981
- per_device_train_batch_size=BATCH_SIZE,
982
- per_device_eval_batch_size=BATCH_SIZE,
983
- num_train_epochs=NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
984
- weight_decay=0.01,
985
- push_to_hub=False,
986
- metric_for_best_model=OPTIMIZED_METRIC,
987
- load_best_model_at_end=True
988
- )
989
-
990
- # Create Trainer object
991
- trainer = Trainer(
992
- model=model,
993
- args=training_args,
994
- train_dataset=train_data,
995
- eval_dataset=test_data,
996
- tokenizer=tokenizer,
997
- data_collator=data_collator,
998
- compute_metrics=compute_metrics,
999
- callbacks=[EarlyStoppingCallback(early_stopping_patience=PATIENCE)]
1000
- )
1001
-
1002
- # Add custom callback
1003
- trainer.add_callback(CustomCallback(trainer))
1004
-
1005
- # Start training
1006
- trainer.train()
1007
-
1008
- return trainer
1009
-
1010
-
1011
- def calculate_number_of_models(num_columns):
1012
- """
1013
- Calculates the number of models required based on the number of columns.
1014
-
1015
- Args:
1016
- num_columns (int): The total number of columns.
1017
-
1018
- Returns:
1019
- int: The number of models required.
1020
-
1021
- Raises:
1022
- Exception: If the number of models cannot be calculated to match the number of columns.
1023
- """
1024
- num_models = 0
1025
- count_human = 1 # Initial count representing human input
1026
-
1027
- while True:
1028
- count_single = num_models # Single model count
1029
- count_pair = num_models * num_models # Pair model count
1030
-
1031
- total_count = count_human + count_single + count_pair
1032
-
1033
- if total_count == num_columns:
1034
- return num_models
1035
- elif total_count > num_columns:
1036
- raise Exception("Cannot calculate the number of models to match the number of columns")
1037
-
1038
- num_models += 1
1039
-
1040
-
1041
- def read_multimodel_data_from_csv(multimodel_csv_file):
1042
- """
1043
- Reads multimodel data from a CSV file and organizes it into a structured format.
1044
-
1045
- Args:
1046
- multimodel_csv_file (str): Path to the CSV file containing multimodel data.
1047
-
1048
- Returns:
1049
- list: A list of dictionaries, each containing 'human', 'single', and 'pair' data.
1050
-
1051
- Raises:
1052
- Exception: If there is an error in reading the CSV file or processing the data.
1053
- """
1054
- # Read CSV data into a list of lists
1055
- input_data = read_csv_data(multimodel_csv_file)
1056
-
1057
- # Initialize the result list
1058
- structured_data = []
1059
-
1060
- # Calculate the number of models based on the number of columns in the first row
1061
- num_models = calculate_number_of_models(len(input_data[0]))
1062
-
1063
- # Process each row in the input data
1064
- for row in input_data:
1065
- row_data = {}
1066
- index = 0
1067
-
1068
- # Extract human data
1069
- row_data["human"] = row[index]
1070
- index += 1
1071
-
1072
- # Extract single model data
1073
- single_model_data = []
1074
- for _ in range(num_models):
1075
- single_model_data.append(row[index])
1076
- index += 1
1077
- row_data["single"] = single_model_data
1078
-
1079
- # Extract pair model data
1080
- pair_model_data = []
1081
- for _ in range(num_models):
1082
- sub_pair_data = []
1083
- for _ in range(num_models):
1084
- sub_pair_data.append(row[index])
1085
- index += 1
1086
- pair_model_data.append(sub_pair_data)
1087
- row_data["pair"] = pair_model_data
1088
-
1089
- # Append the structured row data to the result list
1090
- structured_data.append(row_data)
1091
-
1092
- return structured_data
1093
-
1094
-
1095
- def check_error(data_item):
1096
- """
1097
- Checks for errors in a data item by verifying the 'human', 'single', and 'pair' fields.
1098
-
1099
- Args:
1100
- data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
1101
-
1102
- Returns:
1103
- bool: True if any of the fields contain an error, otherwise False.
1104
- """
1105
- # Check for API error in the 'human' field
1106
- if check_api_error(data_item["human"]):
1107
- return True
1108
-
1109
- # Check for API error in the 'single' model data
1110
- for single_text in data_item["single"]:
1111
- if check_api_error(single_text):
1112
- return True
1113
-
1114
- # Get the number of models from the 'single' model data
1115
- num_models = len(data_item["single"])
1116
-
1117
- # Check for API error in the 'pair' model data
1118
- for i in range(num_models):
1119
- for j in range(num_models):
1120
- if check_api_error(data_item["pair"][i][j]):
1121
- return True
1122
-
1123
- # No errors found
1124
- return False
1125
-
1126
-
1127
-
1128
- def create_pair_sample(data_item, training_indices):
1129
- """
1130
- Creates pair samples for training by comparing human data with machine-generated data.
1131
-
1132
- Args:
1133
- data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
1134
- training_indices (list): A list of indices used for training.
1135
-
1136
- Returns:
1137
- list: A list of dictionaries, each containing a 'text' array and a 'label'.
1138
- """
1139
- # Initialize the result list
1140
- result_samples = []
1141
-
1142
- # Check if there is any error in the data_item
1143
- if check_error(data_item):
1144
- return result_samples
1145
-
1146
- print(training_indices)
1147
- print(data_item)
1148
- # Create machine samples
1149
- for train_idx in training_indices:
1150
- if data_item["human"] != data_item["single"][train_idx]:
1151
- text_array = []
1152
- machine_text = data_item["single"][train_idx]
1153
- text_array.append(machine_text)
1154
-
1155
- for sub_idx in training_indices:
1156
- text_array.append(data_item["pair"][train_idx][sub_idx])
1157
-
1158
- sample = {
1159
- "text": text_array,
1160
- "label": MACHINE_LABEL
1161
- }
1162
- result_samples.append(sample)
1163
-
1164
- # Create human samples
1165
- text_array = [data_item["human"]]
1166
-
1167
- for train_idx in training_indices:
1168
- text_array.append(data_item["single"][train_idx])
1169
-
1170
- human_sample = {
1171
- "text": text_array,
1172
- "label": HUMAN_LABEL
1173
- }
1174
-
1175
- # Append human samples for each machine sample
1176
- num_machine_samples = len(result_samples)
1177
- for _ in range(num_machine_samples):
1178
- result_samples.append(human_sample)
1179
-
1180
- return result_samples
1181
-
1182
-
1183
- def create_pair_test_sample(data_item, training_indices, testing_indices):
1184
- """
1185
- Creates pair test samples by comparing human data with machine-generated data.
1186
-
1187
- Args:
1188
- data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
1189
- training_indices (list): A list of indices used for training.
1190
- testing_indices (list): A list of indices used for testing.
1191
-
1192
- Returns:
1193
- list: A list of dictionaries, each containing a 'text' array and a 'label'.
1194
- """
1195
- # Initialize the result list
1196
- result_samples = []
1197
-
1198
- # Check if there is any error in the data_item
1199
- if check_error(data_item):
1200
- return result_samples
1201
-
1202
- # Create machine samples based on testing indices
1203
- for test_idx in testing_indices:
1204
- if data_item["human"] != data_item["single"][test_idx]:
1205
- text_array = []
1206
- machine_text = data_item["single"][test_idx]
1207
- text_array.append(machine_text)
1208
-
1209
- for train_idx in training_indices:
1210
- text_array.append(data_item["pair"][test_idx][train_idx])
1211
-
1212
- sample = {
1213
- "text": text_array,
1214
- "label": MACHINE_LABEL
1215
- }
1216
- result_samples.append(sample)
1217
-
1218
- # Create human sample
1219
- text_array = [data_item["human"]]
1220
-
1221
- for train_idx in training_indices:
1222
- text_array.append(data_item["single"][train_idx])
1223
-
1224
- human_sample = {
1225
- "text": text_array,
1226
- "label": HUMAN_LABEL
1227
- }
1228
-
1229
- # Append the human sample for each machine sample
1230
- num_machine_samples = len(result_samples)
1231
- for _ in range(num_machine_samples):
1232
- result_samples.append(human_sample)
1233
-
1234
- return result_samples
1235
-
1236
-
1237
-
1238
- def create_train_val_sample(data, training_indices):
1239
- """
1240
- Creates training and validation samples from the provided data.
1241
-
1242
- Args:
1243
- data (list): A list of data items, each to be processed.
1244
- training_indices (list): A list of indices used for training.
1245
-
1246
- Returns:
1247
- list: A list of training and validation samples created from the data.
1248
- """
1249
- # Initialize the result list
1250
- result_samples = []
1251
-
1252
- # Process each item in the data
1253
- for data_item in data:
1254
- # Create pair samples for the current item
1255
- sub_samples = create_pair_sample(data_item, training_indices)
1256
-
1257
- # Extend the result list with the created sub-samples
1258
- result_samples.extend(sub_samples)
1259
-
1260
- return result_samples
1261
-
1262
-
1263
- def create_test_sample(data, training_indices, testing_indices):
1264
- """
1265
- Creates test samples from the provided data by comparing human data with machine-generated data.
1266
-
1267
- Args:
1268
- data (list): A list of data items, each to be processed.
1269
- training_indices (list): A list of indices used for training.
1270
- testing_indices (list): A list of indices used for testing.
1271
-
1272
- Returns:
1273
- list: A list of test samples created from the data.
1274
- """
1275
- # Initialize the result list
1276
- result_samples = []
1277
-
1278
- # Process each item in the data
1279
- for data_item in data:
1280
- # Create pair test samples for the current item
1281
- sub_samples = create_pair_test_sample(data_item, training_indices, testing_indices)
1282
-
1283
- # Extend the result list with the created sub-samples
1284
- result_samples.extend(sub_samples)
1285
-
1286
- return result_samples
1287
-
1288
-
1289
- def distribute_data(data, train_indices, test_indices, train_ratio, val_ratio):
1290
- """
1291
- Distributes the data into training, validation, and test samples.
1292
-
1293
- Args:
1294
- data (list): A list of data items to be split and processed.
1295
- train_indices (list): A list of indices used for training.
1296
- test_indices (list): A list of indices used for testing.
1297
- train_ratio (float): The ratio of data to be used for training.
1298
- val_ratio (float): The ratio of data to be used for validation.
1299
-
1300
- Returns:
1301
- tuple: A tuple containing lists of training, validation, and test samples.
1302
- """
1303
- # Split the data into training, validation, and test sets
1304
- train_data, val_data, test_data = split_train_val_test(data, train_ratio, val_ratio)
1305
-
1306
- # Create training samples
1307
- train_samples = create_train_val_sample(train_data, train_indices)
1308
- write_to_file(OUTPUT_FILE, f"train samples = {len(train_samples)}\n")
1309
-
1310
- # Create validation samples
1311
- val_samples = create_train_val_sample(val_data, train_indices)
1312
- write_to_file(OUTPUT_FILE, f"val samples = {len(val_samples)}\n")
1313
-
1314
- # Create test samples
1315
- test_samples = create_test_sample(test_data, train_indices, test_indices)
1316
- write_to_file(OUTPUT_FILE, f"test samples = {len(test_samples)}\n")
1317
-
1318
- return train_samples, val_samples, test_samples
1319
-
1320
-
1321
- def convert_to_huggingface_with_multimodel(samples):
1322
- """
1323
- Converts a list of samples to the Hugging Face Dataset format.
1324
-
1325
- Args:
1326
- samples (list): A list of samples to be converted.
1327
-
1328
- Returns:
1329
- Dataset: A Hugging Face Dataset object created from the samples.
1330
- """
1331
- return Dataset.from_list(samples)
1332
-
1333
-
1334
-
1335
- def train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_type):
1336
- """
1337
- Trains a transformer model with multimodal data and early stopping.
1338
-
1339
- Args:
1340
- train_samples (list): A list of training samples.
1341
- val_samples (list): A list of validation samples.
1342
- input_type (str): The type of input data (e.g., multimodal).
1343
-
1344
- Returns:
1345
- object: The trained model with early stopping.
1346
- """
1347
- # Convert training and validation samples to Hugging Face Dataset format
1348
- train_data = convert_to_huggingface_with_multimodel(train_samples)
1349
- val_data = convert_to_huggingface_with_multimodel(val_samples)
1350
-
1351
- # Train the model with early stopping and return the trained model
1352
- return train_only_by_transformer_with_test_evaluation_early_stop(train_data, val_data, input_type)
1353
-
1354
-
1355
- def test_by_transformer_with_multimodel(detector, test_samples, input_type):
1356
- """
1357
- Tests a trained transformer model with multimodal data.
1358
-
1359
- Args:
1360
- detector (object): The trained model to be evaluated.
1361
- test_samples (list): A list of test samples.
1362
- input_type (str): The type of input data (e.g., multimodal).
1363
-
1364
- Returns:
1365
- None
1366
- """
1367
- # Convert test samples to Hugging Face Dataset format
1368
- test_data = convert_to_huggingface_with_multimodel(test_samples)
1369
-
1370
- # Apply the appropriate preprocessing function based on the input type
1371
- if input_type == MULTIMODEL:
1372
- test_data = test_data.map(preprocess_function_multimodel, batched=True)
1373
- elif input_type == SINGLE_FROM_MULTIMODEL:
1374
- test_data = test_data.map(preprocess_function_single_from_multimodel, batched=True)
1375
-
1376
- print("Test data:", test_data)
1377
- # Evaluate the model on the test data
1378
- result = detector.evaluate(eval_dataset=test_data)
1379
- print("Test result:", result)
1380
-
1381
- # Extract and log the ROC AUC score
1382
- roc_auc = result['eval_roc_auc']
1383
- write_to_file(OUTPUT_FILE, "roc_auc: %.1f%%" % (roc_auc * 100.0) + "\n")
1384
-
1385
-
1386
-
1387
- def extract_by_feature_kind(samples, feature_type):
1388
- """
1389
- Extracts features from the given samples based on the specified feature type.
1390
-
1391
- Args:
1392
- samples (list): A list of samples where each sample is a dictionary with 'text' and 'label' keys.
1393
- feature_type (str): The type of feature to extract.
1394
-
1395
- Returns:
1396
- tuple: A tuple containing the extracted features and corresponding labels.
1397
- """
1398
- text_1_list = []
1399
- text_2_list = []
1400
- labels = []
1401
-
1402
- for sample in samples:
1403
- text_1_list.append(sample["text"][0])
1404
- text_2_list.append(sample["text"][1])
1405
- labels.append(sample["label"])
1406
-
1407
- # Extract features in batch based on the feature type
1408
- features = extract_feature_in_batch(text_1_list, text_2_list, feature_type)
1409
-
1410
- return features, labels
1411
-
1412
-
1413
- def train_by_feature_kind(train_samples, feature_type):
1414
- """
1415
- Trains a model using features extracted from the training samples based on the specified feature type.
1416
-
1417
- Args:
1418
- train_samples (list): A list of training samples where each sample is a dictionary with 'text' and 'label' keys.
1419
- feature_type (str): The type of feature to extract for training.
1420
-
1421
- Returns:
1422
- object: The trained model.
1423
- """
1424
- # Extract features and labels from the training samples
1425
- features, labels = extract_by_feature_kind(train_samples, feature_type)
1426
-
1427
- # Convert features to a numpy array and reshape for training
1428
- features = np.array(features)
1429
- features = features.reshape(-1, 1)
1430
-
1431
- # Train the model using the extracted features and labels
1432
- model = abstract_train(features, labels)
1433
-
1434
- return model
1435
-
1436
-
1437
- def test_by_feature_kind(detector, samples, feature_type):
1438
- """
1439
- Tests a detector using features extracted from the provided samples based on the specified feature type.
1440
-
1441
- Args:
1442
- detector (object): The detector model to be evaluated.
1443
- samples (list): A list of samples where each sample is a dictionary with 'text' and 'label' keys.
1444
- feature_type (str): The type of feature to extract for testing.
1445
-
1446
- Returns:
1447
- None
1448
- """
1449
- # Extract features and labels from the samples
1450
- features, labels = extract_by_feature_kind(samples, feature_type)
1451
-
1452
- # Convert features to a numpy array and reshape for evaluation
1453
- features = np.array(features)
1454
- features = features.reshape(-1, 1)
1455
-
1456
- # Evaluate the detector model using the extracted features and labels
1457
- evaluate_model(detector, features, labels)
1458
-
1459
-
1460
- def general_process_multimodels_train_val_test(train_samples, val_samples, test_samples):
1461
- """
1462
- General process for training, validating, and testing models using multi-model and feature kind approaches.
1463
-
1464
- Args:
1465
- train_samples (list): Training samples.
1466
- val_samples (list): Validation samples.
1467
- test_samples (list): Test samples.
1468
-
1469
- Returns:
1470
- None
1471
- """
1472
- # Multi-model approach
1473
- input_kind = MULTIMODEL
1474
- write_to_file(OUTPUT_FILE, f"\nInput kind = {input_kind} \n")
1475
-
1476
- # Train detector using multi-model with early stopping
1477
- detector = train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_kind)
1478
- detector.save_model("./models/multi_model_detector")
1479
-
1480
- # Evaluate on train set
1481
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
1482
- test_by_transformer_with_multimodel(detector, train_samples, input_kind)
1483
-
1484
- # Evaluate on validation set
1485
- write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
1486
- test_by_transformer_with_multimodel(detector, val_samples, input_kind)
1487
-
1488
- # Evaluate on test set
1489
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
1490
- test_by_transformer_with_multimodel(detector, test_samples, input_kind)
1491
-
1492
- # Single from multi-model approach
1493
- input_kind = SINGLE_FROM_MULTIMODEL
1494
- write_to_file(OUTPUT_FILE, f"\nInput kind = {input_kind} \n")
1495
-
1496
- # Train detector using single from multi-model with early stopping
1497
- detector = train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_kind)
1498
- detector.save_model("./models/single_model_detector_1")
1499
-
1500
- # Evaluate on train set
1501
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
1502
- test_by_transformer_with_multimodel(detector, train_samples, input_kind)
1503
-
1504
- # Evaluate on validation set
1505
- write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
1506
- test_by_transformer_with_multimodel(detector, val_samples, input_kind)
1507
-
1508
- # Evaluate on test set
1509
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
1510
- test_by_transformer_with_multimodel(detector, test_samples, input_kind)
1511
-
1512
- # Feature kind approach
1513
- sample_length = len(train_samples[0]["text"])
1514
- if sample_length == 2: # Check if the sample length is 2, indicating BART feature kind
1515
- feature_kind = BART
1516
- write_to_file(OUTPUT_FILE, f"\nFeature kind = {feature_kind} \n")
1517
-
1518
- # Train detector using feature kind
1519
- detector = train_by_feature_kind(train_samples, feature_kind)
1520
-
1521
- # Evaluate on train set
1522
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
1523
- test_by_feature_kind(detector, train_samples, feature_kind)
1524
-
1525
- # Evaluate on validation set
1526
- write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
1527
- test_by_feature_kind(detector, val_samples, feature_kind)
1528
-
1529
- # Evaluate on test set
1530
- write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
1531
- test_by_feature_kind(detector, test_samples, feature_kind)
1532
-
1533
-
1534
- def process_multi_models_with_validation(multimodel_csv_file, train_indices, test_indices, num_samples):
1535
- """
1536
- Processes multi-model data with validation, training, and testing.
1537
-
1538
- Args:
1539
- multimodel_csv_file (str): Path to the CSV file containing multi-model data.
1540
- train_indices (list): Indices for the training data.
1541
- test_indices (list): Indices for the testing data.
1542
- num_samples (int): Number of samples to process.
1543
-
1544
- Returns:
1545
- None
1546
- """
1547
- # Log the details of the process
1548
- write_to_file(OUTPUT_FILE, f"PROCESSING FILE={multimodel_csv_file} \n")
1549
- write_to_file(OUTPUT_FILE, f"EXPERIMENT WITH {MODEL_NAME} model \n")
1550
- write_to_file(OUTPUT_FILE, f"NUMBER OF MAX EPOCHS WITH EARLY STOPPING = {NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING} \n")
1551
- write_to_file(OUTPUT_FILE, f"PATIENCE = {PATIENCE} \n")
1552
- write_to_file(OUTPUT_FILE, f"OPTIMIZED METRIC = {OPTIMIZED_METRIC} \n")
1553
- write_to_file(OUTPUT_FILE, f"BATCH SIZE = {BATCH_SIZE} \n")
1554
- write_to_file(OUTPUT_FILE, f"Number of samples = {num_samples} \n")
1555
-
1556
- # Read multi-model data from the CSV file
1557
- data = read_multimodel_data_from_csv(multimodel_csv_file)
1558
-
1559
- # Limit data to the specified number of samples
1560
- data = data[:num_samples]
1561
-
1562
- # Distribute data into training, validation, and testing sets
1563
- train_samples, val_samples, test_samples = distribute_data(data, train_indices, test_indices, TRAIN_RATIO, VAL_RATIO)
1564
-
1565
- # Log the training and testing indices
1566
- write_to_file(OUTPUT_FILE, f"Multimodel training with train indices {train_indices}, test with test indices {test_indices} \n")
1567
-
1568
- # Process the multi-models for training, validation, and testing
1569
- general_process_multimodels_train_val_test(train_samples, val_samples, test_samples)
1570
-
1571
-
1572
-
1573
-
1574
- def split_train_val_test(data, train_ratio, val_ratio):
1575
- """
1576
- Splits the dataset into training, validation, and test sets based on specified ratios.
1577
-
1578
- Args:
1579
- data (list): The dataset to be split.
1580
- train_ratio (float): The ratio of the dataset to be used for training.
1581
- val_ratio (float): The ratio of the dataset to be used for validation.
1582
-
1583
- Returns:
1584
- tuple: A tuple containing three lists - (train_data, val_data, test_data).
1585
- """
1586
- # Calculate the number of samples for the training set
1587
- num_train_samples = int(len(data) * train_ratio)
1588
-
1589
- # Calculate the number of samples for the validation set
1590
- num_val_samples = int(len(data) * val_ratio)
1591
-
1592
- # Split the data into training, validation, and test sets
1593
- train_data = data[:num_train_samples]
1594
- val_data = data[num_train_samples:(num_train_samples + num_val_samples)]
1595
- test_data = data[(num_train_samples + num_val_samples):]
1596
-
1597
- return train_data, val_data, test_data
1598
-
1599
-
1600
- def main():
1601
- """
1602
- Main function to handle argument parsing and execute the sequence of operations
1603
- including data generation and processing with multiple models.
1604
- """
1605
- parser = argparse.ArgumentParser(description='SimLLM.')
1606
-
1607
- # Argument for specifying the list of large language models
1608
- parser.add_argument('--LLMs', nargs="+", default=[CHATGPT],#, "Yi", "OpenChat"],
1609
- help='List of large language models')
1610
-
1611
- # Argument for specifying the list of training indexes
1612
- parser.add_argument('--train_indexes', type=int, default=[0,1,2], nargs="+",
1613
- help='List of training indexes')
1614
-
1615
- # Argument for specifying the list of testing indexes
1616
- parser.add_argument('--test_indexes', type=int, default=[0], nargs="+",
1617
- help='List of testing indexes')
1618
-
1619
- # Argument for specifying the number of samples
1620
- parser.add_argument('--num_samples', type=int, default=5000,
1621
- help='Number of samples')
1622
-
1623
- # Argument for multimodel_csv_file
1624
- parser.add_argument('--multimodel_csv_file', type=str, default="data/ChatGPT_Nous_Hermes_2_Yi_34B_openchat_3_5_1210_with_best_similarity.csv",
1625
- help='multimodel_csv_file')
1626
-
1627
- # Parse the command-line arguments
1628
- args = parser.parse_args()
1629
-
1630
- if args.multimodel_csv_file == "":
1631
- # Static dataset parameters
1632
- dataset_name = "xsum"
1633
- column_name = "document"
1634
- num_samples = args.num_samples
1635
- output_file = "data/test.csv"
1636
-
1637
- # Generate human data with shuffle
1638
- # generate_human_with_shuffle(dataset_name, column_name, num_samples, output_file)
1639
-
1640
- # Existing data parameters
1641
- existing_data_file = output_file
1642
- existing_kinds = []
1643
-
1644
- # New kinds of models to generate data with
1645
- new_kinds = args.LLMs
1646
-
1647
- # Generate new data with best similarity
1648
- generate_new_data_with_best_similarity(existing_data_file, existing_kinds, new_kinds)
1649
-
1650
- # Generate a filename for the multimodel CSV file
1651
- multimodel_csv_file = generate_file_name(existing_data_file, existing_kinds, new_kinds)
1652
-
1653
- else:
1654
- multimodel_csv_file = args.multimodel_csv_file
1655
-
1656
- # Number of samples to process (-1 means process all samples)
1657
- num_samples_to_process = -1
1658
-
1659
- # Training and testing indexes from arguments
1660
- training_indexes = args.train_indexes
1661
- testing_indexes = args.test_indexes
1662
-
1663
- # Process multiple models with validation
1664
- process_multi_models_with_validation(multimodel_csv_file, training_indexes, testing_indexes, num_samples_to_process)
1665
-
1666
- if __name__ == "__main__":
1667
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/texts/SimLLM/bart_score.py DELETED
@@ -1,136 +0,0 @@
1
- # %%
2
- import traceback
3
- from typing import List
4
-
5
- import numpy as np
6
- import torch
7
- import torch.nn as nn
8
- from transformers import (
9
- BartForConditionalGeneration,
10
- BartTokenizer,
11
- )
12
-
13
-
14
- class BARTScorer:
15
- def __init__(
16
- self,
17
- device="cuda:0",
18
- max_length=1024,
19
- checkpoint="facebook/bart-large-cnn",
20
- ):
21
- # Set up model
22
- self.device = device
23
- self.max_length = max_length
24
- self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
25
- self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
26
- self.model.eval()
27
- self.model.to(device)
28
-
29
- # Set up loss
30
- self.loss_fct = nn.NLLLoss(
31
- reduction="none",
32
- ignore_index=self.model.config.pad_token_id,
33
- )
34
- self.lsm = nn.LogSoftmax(dim=1)
35
-
36
- def load(self, path=None):
37
- """Load model from paraphrase finetuning"""
38
- if path is None:
39
- path = "./bart.pth"
40
-
41
- self.model.load_state_dict(torch.load(path, map_location=self.device))
42
-
43
- def score(self, srcs, tgts, batch_size=16):
44
- """Score a batch of examples"""
45
- score_list = []
46
- for i in range(0, len(srcs), batch_size):
47
- src_list = srcs[i : i + batch_size]
48
- tgt_list = tgts[i : i + batch_size]
49
- try:
50
- with torch.no_grad():
51
- encoded_src = self.tokenizer(
52
- src_list,
53
- max_length=self.max_length,
54
- truncation=True,
55
- padding=True,
56
- return_tensors="pt",
57
- )
58
- encoded_tgt = self.tokenizer(
59
- tgt_list,
60
- max_length=self.max_length,
61
- truncation=True,
62
- padding=True,
63
- return_tensors="pt",
64
- )
65
- src_tokens = encoded_src["input_ids"].to(self.device)
66
- src_mask = encoded_src["attention_mask"].to(self.device)
67
-
68
- tgt_tokens = encoded_tgt["input_ids"].to(self.device)
69
- tgt_mask = encoded_tgt["attention_mask"]
70
- tgt_len = tgt_mask.sum(dim=1).to(self.device)
71
-
72
- output = self.model(
73
- input_ids=src_tokens,
74
- attention_mask=src_mask,
75
- labels=tgt_tokens,
76
- )
77
- logits = output.logits.view(
78
- -1,
79
- self.model.config.vocab_size,
80
- )
81
- loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
82
- loss = loss.view(tgt_tokens.shape[0], -1)
83
- loss = loss.sum(dim=1) / tgt_len
84
- curr_score_list = [-x.item() for x in loss]
85
- score_list += curr_score_list
86
-
87
- except RuntimeError:
88
- traceback.print_exc()
89
- print(f"source: {src_list}")
90
- print(f"target: {tgt_list}")
91
- exit(0)
92
- return score_list
93
-
94
- def multi_ref_score(
95
- self,
96
- srcs,
97
- tgts: List[List[str]],
98
- agg="mean",
99
- batch_size=4,
100
- ):
101
- # Assert we have the same number of references
102
- ref_nums = [len(x) for x in tgts]
103
- if len(set(ref_nums)) > 1:
104
- raise Exception(
105
- "You have different number of references per test sample.",
106
- )
107
-
108
- ref_num = len(tgts[0])
109
- score_matrix = []
110
- for i in range(ref_num):
111
- curr_tgts = [x[i] for x in tgts]
112
- scores = self.score(srcs, curr_tgts, batch_size)
113
- score_matrix.append(scores)
114
- if agg == "mean":
115
- score_list = np.mean(score_matrix, axis=0)
116
- elif agg == "max":
117
- score_list = np.max(score_matrix, axis=0)
118
- else:
119
- raise NotImplementedError
120
- return list(score_list)
121
-
122
- def test(self, batch_size=3):
123
- """Test"""
124
- src_list = [
125
- "This is a very good idea. Although simple, but very insightful.",
126
- "Can I take a look?",
127
- "Do not trust him, he is a liar.",
128
- ]
129
-
130
- tgt_list = [
131
- "That's stupid.",
132
- "What's the problem?",
133
- "He is trustworthy.",
134
- ]
135
-
136
- print(self.score(src_list, tgt_list, batch_size))