handwriting-recognition / src /detect_mask_image.py
pmkhanh7890's picture
1st push
6610027
# USAGE
# python detect_mask_image.py --image images/pic1.jpeg
import argparse
import os
import cv2
import numpy as np
# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
def mask_image():
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument(
"-i",
"--image",
required=True,
help="path to input image",
)
ap.add_argument(
"-f",
"--face",
type=str,
default="face_detector",
help="path to face detector model directory",
)
ap.add_argument(
"-m",
"--model",
type=str,
default="mask_detector.model",
help="path to trained face mask detector model",
)
ap.add_argument(
"-c",
"--confidence",
type=float,
default=0.5,
help="minimum probability to filter weak detections",
)
args = vars(ap.parse_args())
# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join(
[
args["face"],
"res10_300x300_ssd_iter_140000.caffemodel",
],
)
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
model = load_model(args["model"])
# load the input image from disk, clone it, and grab the image spatial
# dimensions
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(
image,
1.0,
(300, 300),
(104.0, 177.0, 123.0),
)
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = model.predict(face)[0]
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# include the probability in the label
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%"
# display the label and bounding box rectangle on the output
# frame
cv2.putText(
image,
label,
(startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.45,
color,
2,
)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
def detect_mask_in_image(image, faceNet, maskNet):
# dimensions
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(
image,
1.0,
(300, 300),
(104.0, 177.0, 123.0),
) # TODO: add to config
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
faceNet.setInput(blob)
detections = faceNet.forward()
face_count = 0
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence associated with the detection
confidence = detections[0, 0, i, 2]
# print(f"[INFO] face {i}: {confidence}")
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > 0.5:
face_count += 1
# compute the (x, y)-coordinates of the object's bbox
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI
# ordering, resize it to 224x224, and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face
# has a mask or not
(mask, withoutMask) = maskNet.predict(face)[0]
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (255, 0, 0)
# include the probability in the label
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%"
# display the label & bbox rectangle on the output frame
cv2.putText(
image,
label,
(startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.45,
color,
2,
)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
else:
break
text = f"[INFO] Detect {face_count} face(s)."
print(text)
cv2.putText(
image,
text,
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.70,
(0, 255, 0),
2,
)
return image
if __name__ == "__main__":
mask_image()