Spaces:
Sleeping
Sleeping
# USAGE | |
# python detect_mask_image.py --image images/pic1.jpeg | |
import argparse | |
import os | |
import cv2 | |
import numpy as np | |
# import the necessary packages | |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import img_to_array | |
def mask_image(): | |
# construct the argument parser and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument( | |
"-i", | |
"--image", | |
required=True, | |
help="path to input image", | |
) | |
ap.add_argument( | |
"-f", | |
"--face", | |
type=str, | |
default="face_detector", | |
help="path to face detector model directory", | |
) | |
ap.add_argument( | |
"-m", | |
"--model", | |
type=str, | |
default="mask_detector.model", | |
help="path to trained face mask detector model", | |
) | |
ap.add_argument( | |
"-c", | |
"--confidence", | |
type=float, | |
default=0.5, | |
help="minimum probability to filter weak detections", | |
) | |
args = vars(ap.parse_args()) | |
# load our serialized face detector model from disk | |
print("[INFO] loading face detector model...") | |
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"]) | |
weightsPath = os.path.sep.join( | |
[ | |
args["face"], | |
"res10_300x300_ssd_iter_140000.caffemodel", | |
], | |
) | |
net = cv2.dnn.readNet(prototxtPath, weightsPath) | |
# load the face mask detector model from disk | |
print("[INFO] loading face mask detector model...") | |
model = load_model(args["model"]) | |
# load the input image from disk, clone it, and grab the image spatial | |
# dimensions | |
image = cv2.imread(args["image"]) | |
(h, w) = image.shape[:2] | |
# construct a blob from the image | |
blob = cv2.dnn.blobFromImage( | |
image, | |
1.0, | |
(300, 300), | |
(104.0, 177.0, 123.0), | |
) | |
# pass the blob through the network and obtain the face detections | |
print("[INFO] computing face detections...") | |
net.setInput(blob) | |
detections = net.forward() | |
# loop over the detections | |
for i in range(0, detections.shape[2]): | |
# extract the confidence (i.e., probability) associated with | |
# the detection | |
confidence = detections[0, 0, i, 2] | |
# filter out weak detections by ensuring the confidence is | |
# greater than the minimum confidence | |
if confidence > args["confidence"]: | |
# compute the (x, y)-coordinates of the bounding box for | |
# the object | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# ensure the bounding boxes fall within the dimensions of | |
# the frame | |
(startX, startY) = (max(0, startX), max(0, startY)) | |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY)) | |
# extract the face ROI, convert it from BGR to RGB channel | |
# ordering, resize it to 224x224, and preprocess it | |
face = image[startY:endY, startX:endX] | |
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
face = cv2.resize(face, (224, 224)) | |
face = img_to_array(face) | |
face = preprocess_input(face) | |
face = np.expand_dims(face, axis=0) | |
# pass the face through the model to determine if the face | |
# has a mask or not | |
(mask, withoutMask) = model.predict(face)[0] | |
# determine the class label and color we'll use to draw | |
# the bounding box and text | |
label = "Mask" if mask > withoutMask else "No Mask" | |
color = (0, 255, 0) if label == "Mask" else (0, 0, 255) | |
# include the probability in the label | |
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%" | |
# display the label and bounding box rectangle on the output | |
# frame | |
cv2.putText( | |
image, | |
label, | |
(startX, startY - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.45, | |
color, | |
2, | |
) | |
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) | |
# show the output image | |
cv2.imshow("Output", image) | |
cv2.waitKey(0) | |
def detect_mask_in_image(image, faceNet, maskNet): | |
# dimensions | |
(h, w) = image.shape[:2] | |
# construct a blob from the image | |
blob = cv2.dnn.blobFromImage( | |
image, | |
1.0, | |
(300, 300), | |
(104.0, 177.0, 123.0), | |
) # TODO: add to config | |
# pass the blob through the network and obtain the face detections | |
print("[INFO] computing face detections...") | |
faceNet.setInput(blob) | |
detections = faceNet.forward() | |
face_count = 0 | |
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# loop over the detections | |
for i in range(0, detections.shape[2]): | |
# extract the confidence associated with the detection | |
confidence = detections[0, 0, i, 2] | |
# print(f"[INFO] face {i}: {confidence}") | |
# filter out weak detections by ensuring the confidence is | |
# greater than the minimum confidence | |
if confidence > 0.5: | |
face_count += 1 | |
# compute the (x, y)-coordinates of the object's bbox | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# ensure the bounding boxes fall within the dimensions of | |
# the frame | |
(startX, startY) = (max(0, startX), max(0, startY)) | |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY)) | |
# extract the face ROI | |
# ordering, resize it to 224x224, and preprocess it | |
face = image[startY:endY, startX:endX] | |
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
face = cv2.resize(face, (224, 224)) | |
face = img_to_array(face) | |
face = preprocess_input(face) | |
face = np.expand_dims(face, axis=0) | |
# pass the face through the model to determine if the face | |
# has a mask or not | |
(mask, withoutMask) = maskNet.predict(face)[0] | |
# determine the class label and color we'll use to draw | |
# the bounding box and text | |
label = "Mask" if mask > withoutMask else "No Mask" | |
color = (0, 255, 0) if label == "Mask" else (255, 0, 0) | |
# include the probability in the label | |
label = f"{label}: {max(mask, withoutMask) * 100:.2f}%" | |
# display the label & bbox rectangle on the output frame | |
cv2.putText( | |
image, | |
label, | |
(startX, startY - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.45, | |
color, | |
2, | |
) | |
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) | |
else: | |
break | |
text = f"[INFO] Detect {face_count} face(s)." | |
print(text) | |
cv2.putText( | |
image, | |
text, | |
(10, 30), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.70, | |
(0, 255, 0), | |
2, | |
) | |
return image | |
if __name__ == "__main__": | |
mask_image() | |