pmgautam's picture
Add app and requirements file
f4eef28
raw
history blame
1.12 kB
# imports
import gradio as gr
import pandas as pd
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# select GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# setup model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/nllb-200-distilled-600M").to(device)
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
def predict(text):
"""_summary_
predict function to do translation task
"""
text = [text]
inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["npi_Deva"], max_length=30
)
return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
# call gradio interface
examples = ["use this example to see translation in nepali",
"this text is to test english to nepali translation"]
gr.Interface(fn=predict,
inputs=gr.Textbox(),
outputs=gr.Textbox(),
examples=[examples]).launch()