OTA / app.py
pmahdavi's picture
Deploy FFG Mask Explorer initial version
48a55a5
import gradio as gr
import torch
import os
import sys
import json
import gc
from pathlib import Path
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from typing import Dict, List, Optional, Tuple
import numpy as np
from PIL import Image
import io
# Add the ffg_experiment_suite to the path
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'ffg_experiment_suite'))
# Import modules from the surgeon toolkit
from src.models import load_assets
from src.grafting import fast_fisher_graft, magnitude_graft, fish_mask_graft
from src.analysis import (_create_sparsity_distribution_plot,
_set_publication_fonts,
load_masks_from_run)
# Constants
AVAILABLE_MODELS = [
{
"name": "Math Reasoning",
"base": "meta-llama/Meta-Llama-3.1-8B",
"finetuned": "pmahdavi/Llama-3.1-8B-math-reasoning",
"optimizer_states": "pmahdavi/Llama-3.1-8B-math-reasoning:export/exp_avg_sq.safetensors"
},
{
"name": "Coding",
"base": "meta-llama/Meta-Llama-3.1-8B",
"finetuned": "pmahdavi/Llama-3.1-8B-coding-tulu3-ebs128-lr5e6-wsdcr0p4",
"optimizer_states": "pmahdavi/Llama-3.1-8B-coding-tulu3-ebs128-lr5e6-wsdcr0p4:export_full_state_checkpoint-1100/exp_avg_sq.safetensors"
},
{
"name": "Instruction Following",
"base": "meta-llama/Meta-Llama-3.1-8B",
"finetuned": "pmahdavi/Llama-3.1-8B-precise-if",
"optimizer_states": "pmahdavi/Llama-3.1-8B-precise-if:export/exp_avg_sq.safetensors"
},
{
"name": "General",
"base": "meta-llama/Meta-Llama-3.1-8B",
"finetuned": "pmahdavi/Llama-3.1-8B-general",
"optimizer_states": "pmahdavi/Llama-3.1-8B-general:export/exp_avg_sq.safetensors"
},
{
"name": "Knowledge Recall",
"base": "meta-llama/Meta-Llama-3.1-8B",
"finetuned": "pmahdavi/Llama-3.1-8B-knowledge-recall",
"optimizer_states": "pmahdavi/Llama-3.1-8B-knowledge-recall:export/exp_avg_sq.safetensors"
}
]
class FFGMaskExplorer:
def __init__(self):
self.current_masks = None
self.current_stats = None
def generate_masks(self, model_selection: str, sparsity_ratio: float,
grafting_method: str, device_type: str, progress=gr.Progress()):
"""Generate masks for a single model configuration."""
# Find the selected model config
model_config = None
for model in AVAILABLE_MODELS:
if model["name"] == model_selection:
model_config = model
break
if not model_config:
return None, None, "Model not found!"
progress(0.1, desc="Loading models...")
try:
# Prepare config for load_assets
config = {
"base_model_id": model_config["base"],
"finetuned_model_id": model_config["finetuned"],
"optimizer_states_file": model_config["optimizer_states"],
"device": device_type.lower(),
"dtype": "bfloat16"
}
# Load models and optimizer states
pretrained_model, finetuned_model, optimizer_v_state, tokenizer = load_assets(config)
progress(0.5, desc="Generating masks...")
# Generate masks based on method
if grafting_method == "Fast Fisher (FFG)":
grafted_model, stats_dict, masks_dict = fast_fisher_graft(
pretrained_model, finetuned_model, optimizer_v_state, sparsity_ratio
)
elif grafting_method == "Magnitude":
grafted_model, stats_dict, masks_dict = magnitude_graft(
pretrained_model, finetuned_model, sparsity_ratio
)
elif grafting_method == "Fish-Mask":
grafted_model, stats_dict, masks_dict = fish_mask_graft(
pretrained_model, finetuned_model, optimizer_v_state, sparsity_ratio
)
else:
raise ValueError(f"Unknown grafting method: {grafting_method}")
# Store results
self.current_masks = masks_dict
self.current_stats = stats_dict
progress(0.8, desc="Creating visualizations...")
# Generate visualizations
viz_images = self.create_basic_visualizations(masks_dict, stats_dict)
# Clean up memory
del pretrained_model, finetuned_model, grafted_model
if optimizer_v_state is not None:
del optimizer_v_state
gc.collect()
torch.cuda.empty_cache()
progress(1.0, desc="Complete!")
# Format statistics for display
stats_text = self.format_statistics(stats_dict)
return viz_images, stats_text, "Success!"
except Exception as e:
gc.collect()
torch.cuda.empty_cache()
return None, None, f"Error: {str(e)}"
def create_basic_visualizations(self, masks_dict: Dict, stats_dict: Dict) -> List[Image.Image]:
"""Create basic visualizations from the masks."""
images = []
# Set publication fonts
_set_publication_fonts(scale_factor=1.0)
# 1. Overall statistics plot
fig, ax = plt.subplots(figsize=(10, 6))
stats_data = {
'Total Parameters': stats_dict['total_params'],
'Kept Parameters': stats_dict['kept_params'],
'Pruned Parameters': stats_dict['total_params'] - stats_dict['kept_params']
}
ax.bar(stats_data.keys(), stats_data.values(), color=['blue', 'green', 'red'])
ax.set_ylabel('Number of Parameters')
ax.set_title(f'Grafting Statistics (Sparsity: {stats_dict["final_sparsity"]:.2%})')
# Add value labels on bars
for i, (key, value) in enumerate(stats_data.items()):
ax.text(i, value, f'{value:,}', ha='center', va='bottom')
plt.tight_layout()
images.append(self.fig_to_image(fig))
plt.close(fig)
# 2. Layer-wise sparsity plot
fig, ax = plt.subplots(figsize=(14, 8))
# Extract layer information
layer_sparsities = []
layer_names = []
for name, mask in masks_dict.items():
if mask is not None and mask.numel() > 0:
sparsity = 1.0 - mask.float().mean().item()
layer_sparsities.append(sparsity)
# Shorten layer name for display
short_name = name.replace('model.layers.', 'L').replace('.weight', '')
if len(short_name) > 20:
short_name = short_name[:17] + '...'
layer_names.append(short_name)
# Limit to first 50 layers for clarity
if len(layer_names) > 50:
layer_names = layer_names[:50]
layer_sparsities = layer_sparsities[:50]
ax.barh(range(len(layer_names)), layer_sparsities, color='skyblue')
ax.set_yticks(range(len(layer_names)))
ax.set_yticklabels(layer_names, fontsize=8)
ax.set_xlabel('Sparsity Ratio')
ax.set_title('Layer-wise Sparsity Distribution')
ax.set_xlim(0, 1)
plt.tight_layout()
images.append(self.fig_to_image(fig))
plt.close(fig)
# 3. Sample mask heatmap (first few layers)
num_samples = min(4, len(masks_dict))
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()
for idx, (name, mask) in enumerate(list(masks_dict.items())[:num_samples]):
if mask is None or mask.numel() == 0:
continue
ax = axes[idx]
# Convert mask to numpy and visualize
mask_np = mask.cpu().float().numpy()
# For 2D tensors, show directly
if mask.ndim == 2:
im = ax.imshow(mask_np, cmap='RdBu_r', aspect='auto', vmin=0, vmax=1)
else:
# For 1D or higher dim, reshape or show first 2D slice
if mask.ndim == 1:
# Reshape 1D to approximate square
size = int(np.sqrt(mask.numel()))
if size * size == mask.numel():
mask_np = mask_np.reshape(size, size)
else:
# Pad and reshape
target_size = size + 1
padded = np.zeros(target_size * target_size)
padded[:mask.numel()] = mask_np.flatten()
mask_np = padded.reshape(target_size, target_size)
im = ax.imshow(mask_np, cmap='RdBu_r', aspect='auto', vmin=0, vmax=1)
else:
# For higher dimensions, show a 2D slice
mask_np = mask_np.reshape(mask_np.shape[0], -1)[:min(mask_np.shape[0], 512), :min(mask_np.shape[1], 512)]
im = ax.imshow(mask_np, cmap='RdBu_r', aspect='auto', vmin=0, vmax=1)
# Add colorbar
plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
# Set title
short_name = name.replace('model.layers.', 'L').replace('.weight', '')
if len(short_name) > 30:
short_name = short_name[:27] + '...'
ax.set_title(short_name, fontsize=10)
ax.set_xlabel('Dimension 1')
ax.set_ylabel('Dimension 0')
# Hide unused axes
for idx in range(num_samples, len(axes)):
axes[idx].axis('off')
plt.suptitle('Sample Mask Visualizations (1=kept, 0=pruned)', fontsize=14)
plt.tight_layout()
images.append(self.fig_to_image(fig))
plt.close(fig)
return images
def fig_to_image(self, fig) -> Image.Image:
"""Convert matplotlib figure to PIL Image."""
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
return Image.open(buf)
def format_statistics(self, stats_dict: Dict) -> str:
"""Format statistics dictionary as readable text."""
lines = [
"### Grafting Statistics",
f"- **Total Parameters**: {stats_dict['total_params']:,}",
f"- **Kept Parameters**: {stats_dict['kept_params']:,}",
f"- **Pruned Parameters**: {stats_dict['total_params'] - stats_dict['kept_params']:,}",
f"- **Final Sparsity**: {stats_dict['final_sparsity']:.4f}",
f"- **Threshold**: {stats_dict.get('threshold', 'N/A')}"
]
return "\n".join(lines)
# Initialize the explorer
explorer = FFGMaskExplorer()
# Create Gradio interface
with gr.Blocks(title="FFG Mask Explorer", theme=gr.themes.Base()) as app:
gr.Markdown("""
# πŸ”¬ FFG Mask Explorer
Interactive tool for generating and visualizing Fast Fisher Grafting (FFG) masks on fine-tuned language models.
Based on the paper: [Harnessing Optimization Dynamics for Curvature-Informed Model Merging](https://arxiv.org/abs/2509.11167)
### How to use:
1. Select a pre-configured model or enter custom model IDs
2. Choose sparsity ratio (fraction of parameters to KEEP)
3. Select grafting method
4. Click Generate to create masks and visualizations
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model Configuration")
model_dropdown = gr.Dropdown(
choices=[m["name"] for m in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]["name"],
label="Select Pre-configured Model",
interactive=True
)
with gr.Accordion("Custom Model (Advanced)", open=False):
custom_base = gr.Textbox(
label="Base Model ID",
placeholder="e.g., meta-llama/Meta-Llama-3.1-8B"
)
custom_finetuned = gr.Textbox(
label="Fine-tuned Model ID",
placeholder="e.g., username/model-name"
)
custom_optimizer = gr.Textbox(
label="Optimizer States Path",
placeholder="e.g., username/model:export/exp_avg_sq.safetensors"
)
sparsity_slider = gr.Slider(
minimum=0.01,
maximum=0.9,
value=0.4,
step=0.01,
label="Sparsity Ratio (fraction to KEEP)",
info="0.4 means keeping 40% of parameters"
)
method_radio = gr.Radio(
choices=["Fast Fisher (FFG)", "Magnitude", "Fish-Mask"],
value="Fast Fisher (FFG)",
label="Grafting Method",
info="FFG uses optimizer second moments for importance"
)
device_radio = gr.Radio(
choices=["CUDA", "CPU"],
value="CUDA",
label="Device",
info="CUDA recommended for faster processing"
)
generate_btn = gr.Button("πŸš€ Generate Masks", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### Results")
status_text = gr.Textbox(label="Status", interactive=False, value="Ready")
with gr.Tabs():
with gr.TabItem("Visualizations"):
gallery = gr.Gallery(
label="Generated Visualizations",
show_label=False,
elem_id="gallery",
columns=2,
rows=2,
object_fit="contain",
height="auto"
)
with gr.TabItem("Statistics"):
stats_markdown = gr.Markdown("*Generate masks to see statistics*")
with gr.Row():
download_masks_btn = gr.Button("πŸ’Ύ Download Masks", size="sm", interactive=False)
download_viz_btn = gr.Button("πŸ“Š Download Visualizations", size="sm", interactive=False)
# Event handlers
def on_generate(model_selection, sparsity, method, device, progress=gr.Progress()):
images, stats, status = explorer.generate_masks(
model_selection, sparsity, method, device, progress
)
# Enable download buttons if successful
if images:
return (
images,
stats,
status,
gr.Button(interactive=True),
gr.Button(interactive=True)
)
else:
return (
None,
"*Generation failed*",
status,
gr.Button(interactive=False),
gr.Button(interactive=False)
)
generate_btn.click(
fn=on_generate,
inputs=[model_dropdown, sparsity_slider, method_radio, device_radio],
outputs=[gallery, stats_markdown, status_text, download_masks_btn, download_viz_btn]
)
gr.Markdown("""
---
### About FFG
Fast Fisher Grafting (FFG) uses the second moments from Adam optimizer to identify important parameters
in fine-tuned models. This allows for more informed pruning compared to magnitude-based methods.
### Citation
```bibtex
@misc{mahdavinia2025harnessingoptimizationdynamicscurvatureinformed,
title={Harnessing Optimization Dynamics for Curvature-Informed Model Merging},
author={Pouria Mahdavinia and Hamed Mahdavi and Niloofar Mireshghallah and Mehrdad Mahdavi},
year={2025},
eprint={2509.11167},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2509.11167},
}
```
""")
if __name__ == "__main__":
app.launch()