Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,96 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from diffusers import CogVideoXImageToVideoPipeline
|
4 |
-
from diffusers.utils import export_to_video, load_image
|
5 |
import torch
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Streamlit interface
|
11 |
st.title("Image to Video with Hugging Face")
|
12 |
st.write("Upload an image and provide a prompt to generate a video.")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Cache migration step
|
22 |
-
st.write("Migrating the cache for model files...")
|
23 |
-
try:
|
24 |
-
from transformers.utils import move_cache
|
25 |
-
move_cache()
|
26 |
-
st.write("Cache migration completed successfully.")
|
27 |
-
except Exception as e:
|
28 |
-
st.error(f"Cache migration failed: {e}")
|
29 |
-
st.write("Proceeding without cache migration...")
|
30 |
|
31 |
-
|
|
|
32 |
try:
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
st.write("Uploaded image saved successfully.")
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
"
|
51 |
-
|
52 |
-
cache_dir="./huggingface_cache",
|
53 |
-
force_download=True
|
54 |
-
)
|
55 |
-
st.write("Pipeline initialized successfully.")
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
image=image,
|
67 |
-
num_videos_per_prompt=1,
|
68 |
-
num_inference_steps=50,
|
69 |
-
num_frames=81,
|
70 |
-
guidance_scale=6,
|
71 |
-
generator=torch.Generator(device="cuda").manual_seed(42),
|
72 |
-
).frames[0]
|
73 |
-
st.write("Video generated successfully.")
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
st.write(f"Debug info: {e}")
|
87 |
-
else:
|
88 |
-
st.write("Please upload an image and provide a prompt to get started.")
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
|
|
3 |
import torch
|
4 |
|
5 |
+
# Attempt to import the required pipeline
|
6 |
+
try:
|
7 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
8 |
+
pipeline_available = True
|
9 |
+
st.write("CogVideoXImageToVideoPipeline successfully imported.")
|
10 |
+
except ImportError as e:
|
11 |
+
pipeline_available = False
|
12 |
+
st.error("Failed to import CogVideoXImageToVideoPipeline. Please check your diffusers version.")
|
13 |
+
st.write(f"Debug info: {e}")
|
14 |
|
15 |
# Streamlit interface
|
16 |
st.title("Image to Video with Hugging Face")
|
17 |
st.write("Upload an image and provide a prompt to generate a video.")
|
18 |
|
19 |
+
# Check if the pipeline is available before proceeding
|
20 |
+
if not pipeline_available:
|
21 |
+
st.error("The required pipeline is unavailable. Please ensure you have the correct version of the diffusers library.")
|
22 |
+
else:
|
23 |
+
# File uploader for the input image
|
24 |
+
uploaded_file = st.file_uploader("Upload an image (JPG or PNG):", type=["jpg", "jpeg", "png"])
|
25 |
+
prompt = st.text_input("Enter your prompt:", "A little girl is riding a bicycle at high speed. Focused, detailed, realistic.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Cache migration step
|
28 |
+
st.write("Migrating the cache for model files...")
|
29 |
try:
|
30 |
+
from transformers.utils import move_cache
|
31 |
+
move_cache()
|
32 |
+
st.write("Cache migration completed successfully.")
|
33 |
+
except Exception as e:
|
34 |
+
st.error(f"Cache migration failed: {e}")
|
35 |
+
st.write("Proceeding without cache migration...")
|
36 |
|
37 |
+
if uploaded_file and prompt:
|
38 |
+
try:
|
39 |
+
st.write(f"Uploaded file: {uploaded_file.name}")
|
40 |
+
st.write(f"Prompt: {prompt}")
|
|
|
41 |
|
42 |
+
# Save uploaded file
|
43 |
+
st.write("Saving uploaded image...")
|
44 |
+
with open("uploaded_image.jpg", "wb") as f:
|
45 |
+
f.write(uploaded_file.read())
|
46 |
+
st.write("Uploaded image saved successfully.")
|
47 |
|
48 |
+
# Load the image
|
49 |
+
from diffusers.utils import load_image
|
50 |
+
st.write("Loading image...")
|
51 |
+
image = load_image("uploaded_image.jpg")
|
52 |
+
st.write("Image loaded successfully.")
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Initialize the pipeline
|
55 |
+
st.write("Initializing the pipeline...")
|
56 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
57 |
+
"THUDM/CogVideoX1.5-5B-I2V",
|
58 |
+
torch_dtype=torch.bfloat16,
|
59 |
+
cache_dir="./huggingface_cache",
|
60 |
+
force_download=True # Ensure fresh download
|
61 |
+
)
|
62 |
+
st.write("Pipeline initialized successfully.")
|
63 |
|
64 |
+
# Enable optimizations
|
65 |
+
pipe.enable_sequential_cpu_offload()
|
66 |
+
pipe.vae.enable_tiling()
|
67 |
+
pipe.vae.enable_slicing()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Generate video
|
70 |
+
st.write("Generating video... This may take a while.")
|
71 |
+
video_frames = pipe(
|
72 |
+
prompt=prompt,
|
73 |
+
image=image,
|
74 |
+
num_videos_per_prompt=1,
|
75 |
+
num_inference_steps=50,
|
76 |
+
num_frames=81,
|
77 |
+
guidance_scale=6,
|
78 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
79 |
+
).frames[0]
|
80 |
+
st.write("Video generated successfully.")
|
81 |
|
82 |
+
# Export video
|
83 |
+
st.write("Exporting video...")
|
84 |
+
from diffusers.utils import export_to_video
|
85 |
+
video_path = "output.mp4"
|
86 |
+
export_to_video(video_frames, video_path, fps=8)
|
87 |
+
st.write("Video exported successfully.")
|
88 |
|
89 |
+
# Display video
|
90 |
+
st.video(video_path)
|
|
|
|
|
|
|
91 |
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"An error occurred: {e}")
|
94 |
+
st.write(f"Debug info: {e}")
|
95 |
+
else:
|
96 |
+
st.write("Please upload an image and provide a prompt to get started.")
|