Paula Leonova commited on
Commit
43481f8
·
1 Parent(s): ee24d8b

Comment out the confusion matrix - temporary

Browse files
Files changed (1) hide show
  1. app.py +37 -42
app.py CHANGED
@@ -21,7 +21,7 @@ ex_long_text = example_long_text_load()
21
  st.markdown("### Long Text Summarization & Multi-Label Classification")
22
  st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).")
23
  st.write("__Inputs__: User enters their own custom text(s) and labels.")
24
- st.write("__Outputs__: A summary of the text, likelihood percentages for each label and a downloadable csv of the results. \
25
  Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
26
 
27
  example_button = st.button(label='See Example')
@@ -75,33 +75,27 @@ with st.form(key='my_form'):
75
  uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
76
  key='labels_uploader')
77
 
78
- # summary_option = st.multiselect(
79
- # "Match labels to text using?",
80
- # ['Summary', 'Full Text'],
81
- # ['Summary', 'Full Text']
82
- # )
83
-
84
  st.text("\n\n\n")
85
  st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
86
  glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
87
  glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
88
 
89
 
90
- glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False)
91
- with glabels_csv_expander:
92
- st.markdown('##### Choose one of the options below:')
93
- st.write("__Option A:__")
94
- uploaded_onetext_glabels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
95
- key = 'onetext_glabels_uploader')
96
- st.write("__Option B:__")
97
- uploaded_multitext_glabels_file = st.file_uploader('Or Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.',
98
- key = 'multitext_glabels_uploader')
 
99
 
100
 
101
-
102
- threshold_value = st.slider(
103
- 'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
104
- 0.0, 1.0, (0.5))
105
 
106
  submit_button = st.form_submit_button(label='Submit')
107
 
@@ -205,8 +199,9 @@ if submit_button or example_button:
205
  )
206
 
207
 
208
- st.markdown("### Summary")
209
  if gen_summary == 'Yes':
 
210
  with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'):
211
  sum_dict = dict()
212
  for i, key in enumerate(text_chunks_lib):
@@ -274,24 +269,24 @@ if submit_button or example_button:
274
  labels_full_df = pd.concat([labels_full_df, lf_df[labels_full_col_list]])
275
 
276
  with st.expander(f'({i+1}/{len(text_df)}) See intermediate label matching results'):
277
- st.write(f"Results for {text_df['title'][i]}")
278
  if gen_summary == 'Yes':
279
  st.dataframe(pd.merge(labels_sum_df, labels_full_df, on=['title','label']))
280
  else:
281
  st.dataframe(labels_full_df)
282
 
283
  if gen_summary == 'Yes':
284
- label_match_df = pd.merge(labels_sum_df, labels_full_df, on=['title','label'])
285
  else:
286
  label_match_df = labels_full_df.copy()
287
 
288
- # TO DO: ADD Flexibility for csv import
289
  if len(glabels) > 0:
290
  gdata = pd.DataFrame({'label': glabels})
291
- gdata['is_true_label'] = True
292
 
293
- label_match_df = pd.merge(label_match_df, gdata, how = 'left', on = title_element + ['label'])
294
- label_match_df['correct_match'].fillna(0, inplace = True)
295
 
296
  st.dataframe(label_match_df)
297
  st.download_button(
@@ -302,20 +297,20 @@ if submit_button or example_button:
302
  )
303
 
304
 
305
- if len(glabels) > 0:
306
- st.markdown("### Evaluation Metrics")
307
- with st.spinner('Evaluating output against ground truth...'):
308
-
309
- section_header_description = ['Summary Label Performance', 'Original Full Text Label Performance']
310
- data_headers = ['scores_from_summary', 'scores_from_full_text']
311
- for i in range(0,2):
312
- st.markdown(f"###### {section_header_description[i]}")
313
- report = classification_report(y_true = data2[['is_true_label']],
314
- y_pred = (data2[[data_headers[i]]] >= threshold_value) * 1.0,
315
- output_dict=True)
316
- df_report = pd.DataFrame(report).transpose()
317
- st.markdown(f"Threshold set for: {threshold_value}")
318
- st.dataframe(df_report)
319
 
320
  st.success('All done!')
321
- st.balloons()
 
21
  st.markdown("### Long Text Summarization & Multi-Label Classification")
22
  st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).")
23
  st.write("__Inputs__: User enters their own custom text(s) and labels.")
24
+ st.write("__Outputs__: A summary of the text, likelihood match score for each label and a downloadable csv of the results. \
25
  Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
26
 
27
  example_button = st.button(label='See Example')
 
75
  uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
76
  key='labels_uploader')
77
 
 
 
 
 
 
 
78
  st.text("\n\n\n")
79
  st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
80
  glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
81
  glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
82
 
83
 
84
+ # glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False)
85
+ # with glabels_csv_expander:
86
+ # st.markdown('##### Choose one of the options below:')
87
+ # st.write("__Option A:__")
88
+ # uploaded_onetext_glabels_file = st.file_uploader("Single Text: Choose a CSV file with one column and no header, where each cell is a separate label",
89
+ # key = 'onetext_glabels_uploader')
90
+ # st.write("__Option B:__")
91
+ # uploaded_multitext_glabels_file = st.file_uploader('Multiple Text: Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.',
92
+ # key = 'multitext_glabels_uploader')
93
+ #
94
 
95
 
96
+ # threshold_value = st.slider(
97
+ # 'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
98
+ # 0.0, 1.0, (0.5))
 
99
 
100
  submit_button = st.form_submit_button(label='Submit')
101
 
 
199
  )
200
 
201
 
202
+
203
  if gen_summary == 'Yes':
204
+ st.markdown("### Summary")
205
  with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'):
206
  sum_dict = dict()
207
  for i, key in enumerate(text_chunks_lib):
 
269
  labels_full_df = pd.concat([labels_full_df, lf_df[labels_full_col_list]])
270
 
271
  with st.expander(f'({i+1}/{len(text_df)}) See intermediate label matching results'):
272
+ st.write(f"Results for: {text_df['title'][i]}")
273
  if gen_summary == 'Yes':
274
  st.dataframe(pd.merge(labels_sum_df, labels_full_df, on=['title','label']))
275
  else:
276
  st.dataframe(labels_full_df)
277
 
278
  if gen_summary == 'Yes':
279
+ label_match_df = pd.merge(labels_sum_df, labels_full_df, on=title_element + ['label'])
280
  else:
281
  label_match_df = labels_full_df.copy()
282
 
283
+ # TO DO: ADD Flexibility for csv import and multiple texts
284
  if len(glabels) > 0:
285
  gdata = pd.DataFrame({'label': glabels})
286
+ gdata['correct_match'] = True
287
 
288
+ label_match_df = pd.merge(label_match_df, gdata, how = 'left', on = ['label'])
289
+ label_match_df['correct_match'].fillna(False, inplace=True)
290
 
291
  st.dataframe(label_match_df)
292
  st.download_button(
 
297
  )
298
 
299
 
300
+ # if len(glabels) > 0:
301
+ # st.markdown("### Evaluation Metrics")
302
+ # with st.spinner('Evaluating output against ground truth...'):
303
+ #
304
+ # section_header_description = ['Summary Label Performance', 'Original Full Text Label Performance']
305
+ # data_headers = ['scores_from_summary', 'scores_from_full_text']
306
+ # for i in range(0,2):
307
+ # st.markdown(f"###### {section_header_description[i]}")
308
+ # report = classification_report(y_true = data2[['is_true_label']],
309
+ # y_pred = (data2[[data_headers[i]]] >= threshold_value) * 1.0,
310
+ # output_dict=True)
311
+ # df_report = pd.DataFrame(report).transpose()
312
+ # st.markdown(f"Threshold set for: {threshold_value}")
313
+ # st.dataframe(df_report)
314
 
315
  st.success('All done!')
316
+ # st.balloons()