Paula Leonova
commited on
Commit
·
009207e
1
Parent(s):
3d4d8f3
Update label section to include multiple text inputs for summary and full text
Browse files
app.py
CHANGED
@@ -217,6 +217,7 @@ if submit_button or example_button:
|
|
217 |
|
218 |
sum_df = pd.DataFrame.from_dict(sum_dict).T.reset_index()
|
219 |
sum_df.columns = ['title', 'summary_text']
|
|
|
220 |
|
221 |
st.dataframe(sum_df)
|
222 |
st.download_button(
|
@@ -226,30 +227,47 @@ if submit_button or example_button:
|
|
226 |
mime='title_summary/csv',
|
227 |
)
|
228 |
|
229 |
-
if ((len(text_input) == 0 and uploaded_text_files is None
|
230 |
or (len(labels) == 0 and uploaded_labels_file is None)):
|
231 |
st.error('Enter some text and at least one possible topic to see label predictions.')
|
232 |
else:
|
233 |
st.markdown("### Top Label Predictions on Summary vs Full Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
with st.spinner('Matching labels...'):
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
if len(glabels) > 0:
|
255 |
gdata = pd.DataFrame({'label': glabels})
|
|
|
217 |
|
218 |
sum_df = pd.DataFrame.from_dict(sum_dict).T.reset_index()
|
219 |
sum_df.columns = ['title', 'summary_text']
|
220 |
+
# TO DO: Make sure summary_text does not exceed the token length
|
221 |
|
222 |
st.dataframe(sum_df)
|
223 |
st.download_button(
|
|
|
227 |
mime='title_summary/csv',
|
228 |
)
|
229 |
|
230 |
+
if ((len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None)
|
231 |
or (len(labels) == 0 and uploaded_labels_file is None)):
|
232 |
st.error('Enter some text and at least one possible topic to see label predictions.')
|
233 |
else:
|
234 |
st.markdown("### Top Label Predictions on Summary vs Full Text")
|
235 |
+
|
236 |
+
if uploaded_labels_file is not None:
|
237 |
+
labels_df = pd.read_csv(uploaded_labels_file)
|
238 |
+
label_list = labels_df.iloc[:, 0]
|
239 |
+
else:
|
240 |
+
label_list = labels
|
241 |
+
st.write(label_list)
|
242 |
+
|
243 |
with st.spinner('Matching labels...'):
|
244 |
+
|
245 |
+
labels_sum_col_list = ['title', 'label', 'scores_from_summary']
|
246 |
+
labels_sum_df = pd.DataFrame(columns=labels_sum_col_list)
|
247 |
+
|
248 |
+
labels_full_col_list = ['title', 'label', 'scores_from_full_text']
|
249 |
+
labels_full_df = pd.DataFrame(columns=labels_full_col_list)
|
250 |
+
|
251 |
+
for i in range(0, len(text_df)):
|
252 |
+
|
253 |
+
s_topics, s_scores = md.classifier_zero(classifier, sequence=sum_df['summary_text'][i], labels=label_list, multi_class=True)
|
254 |
+
ls_df = pd.DataFrame({'label': s_topics, 'scores_from_summary': s_scores})
|
255 |
+
ls_df['title'] = text_df['title'][i]
|
256 |
+
labels_sum_df = pd.concat([labels_sum_df, ls_df[labels_sum_col_list]])
|
257 |
+
|
258 |
+
f_topics, f_scores = md.classifier_zero(classifier, sequence=text_df['text'][i], labels=label_list, multi_class=True)
|
259 |
+
lf_df = pd.DataFrame({'label': f_topics, 'scores_from_full_text': f_scores})
|
260 |
+
lf_df['title'] = text_df['title'][i]
|
261 |
+
labels_full_df = pd.concat([labels_full_df, lf_df[labels_full_col_list]])
|
262 |
+
|
263 |
+
label_match_df = pd.merge(labels_sum_df, labels_full_df, on=['title','label'])
|
264 |
+
st.dataframe(label_match_df)
|
265 |
+
st.download_button(
|
266 |
+
label="Download data as CSV",
|
267 |
+
data=label_match_df.to_csv().encode('utf-8'),
|
268 |
+
file_name='title_label_sum_full.csv',
|
269 |
+
mime='title_label_sum_full/csv',
|
270 |
+
)
|
271 |
|
272 |
if len(glabels) > 0:
|
273 |
gdata = pd.DataFrame({'label': glabels})
|