Paula Leonova
Update chart axis
a0c7a3f
raw
history blame
3.43 kB
import streamlit as st
import numpy as np
import pandas as pd
import plotly.express as px
from plotly.subplots import make_subplots
import json
# Reference: https://huggingface.co/spaces/team-zero-shot-nli/zero-shot-nli/blob/main/utils.py
def plot_result(top_topics, scores):
top_topics = np.array(top_topics)
scores = np.array(scores)
scores *= 100
fig = px.bar(x=np.around(scores,2), y=top_topics, orientation='h',
labels={'x': 'Confidence Score', 'y': 'Label'},
text=scores,
range_x=(0,115),
title='Predictions',
color=np.linspace(0,1,len(scores)),
color_continuous_scale='GnBu')
fig.update(layout_coloraxis_showscale=False)
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
st.plotly_chart(fig)
def plot_dual_bar_chart(topics_summary, scores_summary, topics_text, scores_text):
data1 = pd.DataFrame({'label': topics_summary, 'scores on summary': scores_summary})
data2 = pd.DataFrame({'label': topics_text, 'scores on full text': scores_text})
data = pd.merge(data1, data2, on = ['label'])
data.sort_values('scores on summary', ascending = True, inplace = True)
fig = make_subplots(rows=1, cols=2,
subplot_titles=("Predictions on Summary", "Predictions on Full Text"),
)
fig1 = px.bar(x=round(data['scores on summary']*100, 2), y=data['label'], orientation='h',
text=round(data['scores on summary']*100, 2),
)
fig2 = px.bar(x=round(data['scores on full text']*100,2), y=data['label'], orientation='h',
text=round(data['scores on full text']*100,2),
)
fig.add_trace(fig1['data'][0], row=1, col=1)
fig.add_trace(fig2['data'][0], row=1, col=2)
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
fig.update_layout(height=600, width=700) #, title_text="Predictions for")
fig.update_xaxes(range=[0,115])
fig.update_xaxes(matches='x')
fig.update_yaxes(showticklabels=False) # hide all the xticks
fig.update_yaxes(showticklabels=True, row=1, col=1)
st.plotly_chart(fig)
# def plot_dual_bar_chart(topics_summary, scores_summary, topics_text, scores_text):
# data1 = pd.DataFrame({'label': topics_summary, 'scores': scores_summary})
# data1['classification_on'] = 'summary'
# data2 = pd.DataFrame({'label': topics_text, 'scores': scores_text})
# data2['classification_on'] = 'full text'
# data = pd.concat([data1, data2])
# data['scores'] = round(data['scores']*100,2)
# fig = px.bar(
# data, x="scores", y="label", #orientation = 'h',
# labels={'x': 'Confidence Score', 'y': 'Label'},
# text=data['scores'],
# range_x=(0,115),
# color="label", barmode="group",
# facet_col="classification_on",
# category_orders={"classification_on": ["summary", "full text"]}
# )
# fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
# st.plotly_chart(fig)
def examples_load():
with open("examples.json") as f:
data=json.load(f)
return data['text'], data['long_text_license'], data['labels']
def example_long_text_load():
with open("example_long_text.txt", "r") as f:
text_data = f.read()
return text_data