|
|
|
from os import write |
|
import time |
|
import pandas as pd |
|
import base64 |
|
from typing import Sequence |
|
import streamlit as st |
|
from sklearn.metrics import classification_report |
|
|
|
|
|
|
|
import models as md |
|
from utils import examples_load, example_long_text_load |
|
import json |
|
|
|
ex_text, ex_license, ex_labels, ex_glabels = examples_load() |
|
ex_long_text = example_long_text_load() |
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### Long Text Summarization & Multi-Label Classification") |
|
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large CNN](https://huggingface.co/facebook/bart-large-cnn) for the summarization task and [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli) for the multi-labels matching. The keywords are independently generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT) and not used in any downstream tasks.") |
|
st.write("__Inputs__: User enters their own custom text(s) and labels.") |
|
st.write("__Outputs__: A summary of the text, likelihood match score for each label and a downloadable csv of the results. \ |
|
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
example_button = st.button(label='See Example') |
|
if example_button: |
|
example_text = ex_long_text |
|
display_text = 'Excerpt from Frankenstein:' + example_text + '"\n\n' + "[This is an excerpt from Project Gutenberg's Frankenstein. " + ex_license + "]" |
|
input_labels = ex_labels |
|
input_glabels = ex_glabels |
|
title_name = 'Frankenstein, Chapter 3' |
|
else: |
|
display_text = '' |
|
input_labels = '' |
|
input_glabels = '' |
|
title_name = 'Submitted Text' |
|
|
|
|
|
|
|
with st.form(key='my_form'): |
|
|
|
|
|
|
|
st.markdown("##### Step 1: Upload Text") |
|
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text) |
|
|
|
text_csv_expander = st.expander(label=f'Want to upload multiple texts at once? Expand to upload your text files below.', expanded=False) |
|
with text_csv_expander: |
|
st.markdown('##### Choose one of the options below:') |
|
st.write("__Option A:__") |
|
uploaded_text_files = st.file_uploader(label="Upload file(s) that end with the .txt suffix", |
|
accept_multiple_files=True, key = 'text_uploader', |
|
type='txt') |
|
st.write("__Option B:__") |
|
uploaded_csv_text_files = st.file_uploader(label='Upload a CSV file with two columns: "title" and "text"', |
|
accept_multiple_files=False, key = 'csv_text_uploader', |
|
type='csv') |
|
|
|
if text_input == display_text and display_text != '': |
|
text_input = example_text |
|
|
|
gen_keywords = st.radio( |
|
"Generate keywords from text? (independent from the input labels below)", |
|
('Yes', 'No') |
|
) |
|
|
|
gen_summary = st.radio( |
|
"Generate summary from text? (recommended for label matching below, but will take longer)", |
|
('Yes', 'No') |
|
) |
|
|
|
|
|
|
|
|
|
st.write('\n') |
|
st.markdown("##### Step 2: Enter Labels") |
|
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000) |
|
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0])) |
|
|
|
labels_csv_expander = st.expander(label=f'Prefer to upload a list of labels instead? Click here to upload your CSV file.',expanded=False) |
|
with labels_csv_expander: |
|
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label", |
|
key='labels_uploader') |
|
|
|
|
|
|
|
|
|
st.write('\n') |
|
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)") |
|
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000) |
|
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0])) |
|
|
|
|
|
glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False) |
|
with glabels_csv_expander: |
|
st.markdown('##### Choose one of the options below:') |
|
st.write("__Option A:__") |
|
uploaded_onetext_glabels_file = st.file_uploader("Single Text: Choose a CSV file with one column and no header, where each cell is a separate label", |
|
key = 'onetext_glabels_uploader') |
|
st.write("__Option B:__") |
|
uploaded_multitext_glabels_file = st.file_uploader('Multiple Text: Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.', |
|
key = 'multitext_glabels_uploader') |
|
|
|
|
|
|
|
|
|
|
|
|
|
submit_button = st.form_submit_button(label='Submit') |
|
|
|
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_") |
|
|
|
|
|
|
|
|
|
|
|
with st.spinner('Loading pretrained models...'): |
|
start = time.time() |
|
summarizer = md.load_summary_model() |
|
s_time = round(time.time() - start,4) |
|
|
|
start = time.time() |
|
classifier = md.load_model() |
|
c_time = round(time.time() - start,4) |
|
|
|
start = time.time() |
|
kw_model = md.load_keyword_model() |
|
k_time = round(time.time() - start,4) |
|
|
|
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.') |
|
|
|
|
|
|
|
if submit_button or example_button: |
|
|
|
|
|
|
|
if len(text_input) == 0 and len(uploaded_text_files) == 0 and uploaded_csv_text_files is None: |
|
st.error("Enter some text to generate a summary") |
|
else: |
|
|
|
if len(text_input) != 0: |
|
text_df = pd.DataFrame.from_dict({'title': [title_name], 'text': [text_input]}) |
|
|
|
|
|
elif len(uploaded_text_files) != 0: |
|
st.markdown("### Text Inputs") |
|
st.write('Files concatenated into a dataframe:') |
|
file_names = [] |
|
raw_texts = [] |
|
for uploaded_file in uploaded_text_files: |
|
text = str(uploaded_file.read(), "utf-8") |
|
raw_texts.append(text) |
|
title_file_name = uploaded_file.name.replace('.txt','') |
|
file_names.append(title_file_name) |
|
text_df = pd.DataFrame({'title': file_names, |
|
'text': raw_texts}) |
|
st.dataframe(text_df.head()) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=text_df.to_csv().encode('utf-8'), |
|
file_name='title_text.csv', |
|
mime='title_text/csv', |
|
) |
|
|
|
elif uploaded_csv_text_files is not None: |
|
text_df = pd.read_csv(uploaded_csv_text_files) |
|
|
|
|
|
if len(text_input) != 0: |
|
title_element = [] |
|
else: |
|
title_element = ['title'] |
|
|
|
|
|
|
|
|
|
|
|
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'): |
|
|
|
|
|
text_chunks_lib = dict() |
|
for i in range(0, len(text_df)): |
|
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024) |
|
|
|
|
|
text_chunks = [] |
|
for n in range(0, len(nested_sentences)): |
|
tc = " ".join(map(str, nested_sentences[n])) |
|
text_chunks.append(tc) |
|
title_entry = text_df['title'][i] |
|
text_chunks_lib[title_entry] = text_chunks |
|
|
|
|
|
|
|
|
|
|
|
if gen_keywords == 'Yes': |
|
st.markdown("### Top Keywords") |
|
with st.spinner("Generating keywords from text..."): |
|
|
|
kw_dict = dict() |
|
text_chunk_counter = 0 |
|
for key in text_chunks_lib: |
|
keywords_list = [] |
|
for text_chunk in text_chunks_lib[key]: |
|
text_chunk_counter += 1 |
|
keywords_list += md.keyword_gen(kw_model, text_chunk) |
|
kw_dict[key] = dict(keywords_list) |
|
|
|
kw_df0 = pd.DataFrame.from_dict(kw_dict).reset_index() |
|
kw_df0.rename(columns={'index': 'keyword'}, inplace=True) |
|
kw_df = pd.melt(kw_df0, id_vars=['keyword'], var_name='title', value_name='score').dropna() |
|
|
|
kw_column_list = ['keyword', 'score'] |
|
kw_df = kw_df[kw_df['score'] > 0.25][title_element + kw_column_list].sort_values(title_element + ['score'], ascending=False).reset_index().drop(columns='index') |
|
|
|
st.dataframe(kw_df) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=kw_df.to_csv().encode('utf-8'), |
|
file_name='title_keywords.csv', |
|
mime='title_keywords/csv', |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if gen_summary == 'Yes': |
|
st.markdown("### Summary") |
|
with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'): |
|
sum_dict = dict() |
|
for i, key in enumerate(text_chunks_lib): |
|
with st.expander(label=f'({i+1}/{len(text_df)}) Expand to see intermediate summary generation details for: {key}', expanded=False): |
|
|
|
summary = [] |
|
for num_chunk, text_chunk in enumerate(text_chunks_lib[key]): |
|
chunk_summary = md.summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens=400, minimum_tokens=100) |
|
summary.append(chunk_summary) |
|
|
|
st.markdown(f"###### Original Text Chunk {num_chunk+1}/{len(text_chunks)}" ) |
|
st.markdown(text_chunk) |
|
st.markdown(f"###### Partial Summary {num_chunk+1}/{len(text_chunks)}") |
|
st.markdown(chunk_summary) |
|
|
|
|
|
final_summary = "\n\n".join(list(summary)) |
|
sum_dict[key] = [final_summary] |
|
|
|
sum_df = pd.DataFrame.from_dict(sum_dict).T.reset_index() |
|
sum_df.columns = ['title', 'summary_text'] |
|
|
|
|
|
st.dataframe(sum_df) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=sum_df.to_csv().encode('utf-8'), |
|
file_name='title_summary.csv', |
|
mime='title_summary/csv', |
|
) |
|
|
|
|
|
|
|
|
|
if ((len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None) |
|
or (len(labels) == 0 and uploaded_labels_file is None)): |
|
st.error('Enter some text and at least one possible topic to see label predictions.') |
|
else: |
|
if gen_summary == 'Yes': |
|
st.markdown("### Top Label Predictions on Summary vs Full Text") |
|
else: |
|
st.markdown("### Top Label Predictions on Full Text") |
|
|
|
if uploaded_labels_file is not None: |
|
labels_df = pd.read_csv(uploaded_labels_file, header=None) |
|
label_list = labels_df.iloc[:, 0] |
|
else: |
|
label_list = labels |
|
|
|
with st.spinner('Matching labels...(may take some time)'): |
|
if gen_summary == 'Yes': |
|
labels_sum_col_list = ['title', 'label', 'scores_from_summary'] |
|
labels_sum_df = pd.DataFrame(columns=labels_sum_col_list) |
|
|
|
labels_full_col_list = ['title', 'label', 'scores_from_full_text'] |
|
labels_full_df = pd.DataFrame(columns=labels_full_col_list) |
|
|
|
for i in range(0, len(text_df)): |
|
if gen_summary == 'Yes': |
|
s_topics, s_scores = md.classifier_zero(classifier, sequence=sum_df['summary_text'][i], labels=label_list, multi_class=True) |
|
ls_df = pd.DataFrame({'label': s_topics, 'scores_from_summary': s_scores}) |
|
ls_df['title'] = text_df['title'][i] |
|
labels_sum_df = pd.concat([labels_sum_df, ls_df[labels_sum_col_list]]) |
|
|
|
f_topics, f_scores = md.classifier_zero(classifier, sequence=text_df['text'][i], labels=label_list, multi_class=True) |
|
lf_df = pd.DataFrame({'label': f_topics, 'scores_from_full_text': f_scores}) |
|
lf_df['title'] = text_df['title'][i] |
|
labels_full_df = pd.concat([labels_full_df, lf_df[labels_full_col_list]]) |
|
|
|
with st.expander(f'({i+1}/{len(text_df)}) See intermediate label matching results for: {text_df["title"][i]}'): |
|
if gen_summary == 'Yes': |
|
st.dataframe(pd.merge(ls_df, lf_df, on=['title','label'])) |
|
else: |
|
st.dataframe(lf_df) |
|
|
|
if gen_summary == 'Yes': |
|
label_match_df = pd.merge(labels_sum_df, labels_full_df, on=['title', 'label']) |
|
else: |
|
label_match_df = labels_full_df.copy() |
|
|
|
|
|
|
|
|
|
if len(glabels) > 0: |
|
gdata = pd.DataFrame({'label': glabels}) |
|
join_list = ['label'] |
|
elif uploaded_onetext_glabels_file is not None: |
|
gdata = pd.read_csv(uploaded_onetext_glabels_file, header=None) |
|
join_list = ['label'] |
|
gdata.columns = join_list |
|
elif uploaded_multitext_glabels_file is not None: |
|
gdata = pd.read_csv(uploaded_multitext_glabels_file) |
|
join_list = ['title', 'label'] |
|
gdata.columns = join_list |
|
|
|
if len(glabels) > 0 or uploaded_onetext_glabels_file is not None or uploaded_multitext_glabels_file is not None: |
|
gdata['correct_match'] = True |
|
label_match_df = pd.merge(label_match_df, gdata, how='left', on=join_list) |
|
label_match_df['correct_match'].fillna(False, inplace=True) |
|
|
|
st.dataframe(label_match_df) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=label_match_df.to_csv().encode('utf-8'), |
|
file_name='title_label_sum_full.csv', |
|
mime='title_label_sum_full/csv', |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.success('All done!') |
|
st.balloons() |
|
|