Paula Leonova
Modify loading success details
8d02a0a
raw
history blame
5.24 kB
from os import write
import time
import pandas as pd
import base64
from typing import Sequence
import streamlit as st
from models import create_nest_sentences, load_summary_model, summarizer_gen, load_model, classifier_zero
from utils import plot_result, plot_dual_bar_chart, examples_load, example_long_text_load
import json
ex_text, ex_license, ex_labels = examples_load()
ex_long_text = example_long_text_load()
# if __name__ == '__main__':
st.header("Summzarization & Multi-label Classification for Long Text")
st.write("This app summarizes and then classifies your long text with multiple labels.")
st.write("__Inputs__: User enters their own custom text and labels.")
st.write("__Outputs__: A summary of the text, label likelihood percentages and a downloadable csv of the results.")
with st.form(key='my_form'):
example_text = ex_long_text #ex_text
display_text = "[Excerpt from Project Gutenberg: Frankenstein]\n" + example_text + "\n\n" + ex_license
text_input = st.text_area("Input any text you want to summaryize & classify here (keep in mind very long text will take a while to process):", display_text)
if text_input == display_text:
text_input = example_text
labels = st.text_input('Possible labels (comma-separated):',ex_labels, max_chars=1000)
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
submit_button = st.form_submit_button(label='Submit')
with st.spinner('Loading pretrained summarizer mnli model...'):
start = time.time()
summarizer = load_summary_model()
st.success(f'Time taken to load summarizer mnli model: {round(time.time() - start,4)} seconds')
with st.spinner('Loading pretrained classifier mnli model...'):
start = time.time()
classifier = load_model()
st.success(f'Time taken to load classifier mnli model: {round(time.time() - start,4)} seconds')
if submit_button:
if len(labels) == 0:
st.write('Enter some text and at least one possible topic to see predictions.')
with st.spinner('Generating summaries and matching labels...'):
# For each body of text, create text chunks of a certain token size required for the transformer
nested_sentences = create_nest_sentences(document = text_input, token_max_length = 1024)
summary = []
st.markdown("### Text Chunk & Summaries")
st.markdown("Breaks up the original text into sections with complete sentences totaling \
less than 1024 tokens, a requirement for the summarizer.")
# For each chunk of sentences (within the token max), generate a summary
for n in range(0, len(nested_sentences)):
text_chunk = " ".join(map(str, nested_sentences[n]))
st.markdown(f"###### Original Text Chunk {n+1}/{len(nested_sentences)}" )
st.markdown(text_chunk)
chunk_summary = summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens = 300, minimum_tokens = 20)
summary.append(chunk_summary)
st.markdown(f"###### Partial Summary {n+1}/{len(nested_sentences)}")
st.markdown(chunk_summary)
# Combine all the summaries into a list and compress into one document, again
final_summary = " \n".join(list(summary))
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
st.markdown("### Combined Summary")
st.markdown(final_summary)
st.markdown("### Top Label Predictions on Summary & Full Text")
with st.spinner('Matching labels...'):
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
# st.markdown("### Top Label Predictions: Combined Summary")
# plot_result(topics[::-1][:], scores[::-1][:])
# st.markdown("### Download Data")
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores})
# st.dataframe(data)
# coded_data = base64.b64encode(data.to_csv(index = False). encode ()).decode()
# st.markdown(
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Download Data</a>',
# unsafe_allow_html = True
# )
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
data2 = pd.merge(data, data_ex_text, on = ['label'])
st.markdown("### Data Table")
with st.spinner('Generating a table of results and a download link...'):
coded_data = base64.b64encode(data2.to_csv(index = False). encode ()).decode()
st.markdown(
f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Click here to download the data</a>',
unsafe_allow_html = True
)
st.dataframe(data2)
st.success('All done!')
st.balloons()