Paula Leonova
Update threshold for keyword score
44ef896
raw
history blame
14.3 kB
from os import write
import time
import pandas as pd
import base64
from typing import Sequence
import streamlit as st
from sklearn.metrics import classification_report
# from models import create_nest_sentences, load_summary_model, summarizer_gen, load_model, classifier_zero
import models as md
from utils import plot_result, plot_dual_bar_chart, examples_load, example_long_text_load
import json
ex_text, ex_license, ex_labels, ex_glabels = examples_load()
ex_long_text = example_long_text_load()
# if __name__ == '__main__':
st.markdown("### Long Text Summarization & Multi-Label Classification")
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).")
st.write("__Inputs__: User enters their own custom text(s) and labels.")
st.write("__Outputs__: A summary of the text, likelihood percentages for each label and a downloadable csv of the results. \
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
example_button = st.button(label='See Example')
if example_button:
example_text = ex_long_text #ex_text
display_text = 'Excerpt from Frankenstein:' + example_text + '"\n\n' + "[This is an excerpt from Project Gutenberg's Frankenstein. " + ex_license + "]"
input_labels = ex_labels
input_glabels = ex_glabels
else:
display_text = ''
input_labels = ''
input_glabels = ''
with st.form(key='my_form'):
st.markdown("##### Step 1: Upload Text")
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text)
text_csv_expander = st.expander(label=f'Want to upload multiple texts at once? Expand to upload your text files below.', expanded=False)
with text_csv_expander:
st.markdown('##### Choose one of the options below:')
st.write("__Option A:__")
uploaded_text_files = st.file_uploader(label="Upload file(s) that end with the .txt suffix",
accept_multiple_files=True, key = 'text_uploader',
type = 'txt')
st.write("__Option B:__")
uploaded_csv_text_files = st.file_uploader(label='Upload a CSV file with columns: "title" and "text"',
accept_multiple_files=False, key = 'csv_text_uploader',
type = 'csv')
if text_input == display_text and display_text != '':
text_input = example_text
st.text("\n\n\n")
st.markdown("##### Step 2: Enter Labels")
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000)
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
labels_csv_expander = st.expander(label=f'Prefer to upload a list of labels instead? Click here to upload your CSV file.',expanded=False)
with labels_csv_expander:
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
key='labels_uploader')
gen_keywords = st.radio(
"Generate keywords from text (independent from the above labels)?",
('Yes', 'No')
)
st.text("\n\n\n")
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False)
with glabels_csv_expander:
st.markdown('##### Choose one of the options below:')
st.write("__Option A:__")
uploaded_onetext_glabels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
key = 'onetext_glabels_uploader')
st.write("__Option B:__")
uploaded_multitext_glabels_file = st.file_uploader('Or Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.',
key = 'multitext_glabels_uploader')
threshold_value = st.slider(
'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
0.0, 1.0, (0.5))
submit_button = st.form_submit_button(label='Submit')
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_")
with st.spinner('Loading pretrained models...'):
start = time.time()
summarizer = md.load_summary_model()
s_time = round(time.time() - start,4)
start = time.time()
classifier = md.load_model()
c_time = round(time.time() - start,4)
start = time.time()
kw_model = md.load_keyword_model()
k_time = round(time.time() - start,4)
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.')
# st.success(None)
if submit_button or example_button:
if len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None:
st.error("Enter some text to generate a summary")
else:
if len(text_input) != 0:
text_df = pd.DataFrame.from_dict({'title': ['sample'], 'text': [text_input]})
# OPTION A:
elif uploaded_text_files is not None:
st.markdown("### Text Inputs")
st.write('Files concatenated into a dataframe:')
file_names = []
raw_texts = []
for uploaded_file in uploaded_text_files:
text = str(uploaded_file.read(), "utf-8")
raw_texts.append(text)
title_file_name = uploaded_file.name.replace('.txt','')
file_names.append(title_file_name)
text_df = pd.DataFrame({'title': file_names,
'text': raw_texts})
st.dataframe(text_df.head())
st.download_button(
label="Download data as CSV",
data=text_df.to_csv().encode('utf-8'),
file_name='title_text.csv',
mime='title_text/csv',
)
# OPTION B: [TO DO: DIRECT CSV UPLOAD INSTEAD]
if len(text_input) != 0:
text_df = pd.DataFrame.from_dict({'title': ['sample'], 'text': [text_input]})
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'):
# For each body of text, create text chunks of a certain token size required for the transformer
text_chunks_lib = dict()
for i in range(0, len(text_df)):
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
# For each chunk of sentences (within the token max)
text_chunks = []
for n in range(0, len(nested_sentences)):
tc = " ".join(map(str, nested_sentences[n]))
text_chunks.append(tc)
title_entry = text_df['title'][i]
text_chunks_lib[title_entry] = text_chunks
if gen_keywords == 'Yes':
st.markdown("### Top Keywords")
with st.spinner("Generating keywords from text..."):
kw_dict = dict()
text_chunk_counter = 0
for key in text_chunks_lib:
keywords_list = []
for text_chunk in text_chunks_lib[key]:
text_chunk_counter += 1
keywords_list += md.keyword_gen(kw_model, text_chunk)
kw_dict[key] = dict(keywords_list)
# Display as a dataframe
kw_df0 = pd.DataFrame.from_dict(kw_dict).reset_index()
kw_df0.rename(columns={'index': 'keyword'}, inplace=True)
kw_df = pd.melt(kw_df0, id_vars=['keyword'], var_name='title', value_name='score').dropna()
if len(text_input) != 0:
title_element = []
else:
title_element = ['title']
kw_column_list = ['keyword', 'score']
kw_df = kw_df[kw_df['score'] > 0.25][title_element + kw_column_list].sort_values(title_element + ['score'], ascending=False).reset_index().drop(columns='index')
st.dataframe(kw_df)
st.download_button(
label="Download data as CSV",
data=kw_df.to_csv().encode('utf-8'),
file_name='title_keywords.csv',
mime='title_keywords/csv',
)
st.markdown("### Summary")
with st.spinner(f'Generating summaries for {text_chunk_counter} text chunks (this may take a minute)...'):
my_summary_expander = st.expander(label=f'Expand to see intermediate summary generation details for {len(text_chunks)} text chunks')
with my_summary_expander:
summary = []
st.markdown("_Once the original text is broken into smaller chunks (totaling no more than 1024 tokens, \
with complete sentences), each block of text is then summarized separately using BART NLI \
and then combined at the very end to generate the final summary._")
for num_chunk, text_chunk in enumerate(text_chunks):
st.markdown(f"###### Original Text Chunk {num_chunk+1}/{len(text_chunks)}" )
st.markdown(text_chunk)
chunk_summary = md.summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens = 300, minimum_tokens = 20)
summary.append(chunk_summary)
st.markdown(f"###### Partial Summary {num_chunk+1}/{len(text_chunks)}")
st.markdown(chunk_summary)
# Combine all the summaries into a list and compress into one document, again
final_summary = " \n\n".join(list(summary))
st.markdown(final_summary)
if len(text_input) == 0 or len(labels) == 0:
st.error('Enter some text and at least one possible topic to see label predictions.')
else:
st.markdown("### Top Label Predictions on Summary vs Full Text")
with st.spinner('Matching labels...'):
topics, scores = md.classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
# st.markdown("### Top Label Predictions: Combined Summary")
# plot_result(topics[::-1][:], scores[::-1][:])
# st.markdown("### Download Data")
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores})
# st.dataframe(data)
# coded_data = base64.b64encode(data.to_csv(index = False). encode ()).decode()
# st.markdown(
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Download Data</a>',
# unsafe_allow_html = True
# )
topics_ex_text, scores_ex_text = md.classifier_zero(classifier, sequence=text_input, labels=labels, multi_class=True)
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
data2 = pd.merge(data, data_ex_text, on = ['label'])
if len(glabels) > 0:
gdata = pd.DataFrame({'label': glabels})
gdata['is_true_label'] = int(1)
data2 = pd.merge(data2, gdata, how = 'left', on = ['label'])
data2['is_true_label'].fillna(0, inplace = True)
st.markdown("### Data Table")
with st.spinner('Generating a table of results and a download link...'):
st.dataframe(data2)
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
csv = convert_df(data2)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='text_labels.csv',
mime='text/csv',
)
# coded_data = base64.b64encode(data2.to_csv(index = False). encode ()).decode()
# st.markdown(
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Click here to download the data</a>',
# unsafe_allow_html = True
# )
if len(glabels) > 0:
st.markdown("### Evaluation Metrics")
with st.spinner('Evaluating output against ground truth...'):
section_header_description = ['Summary Label Performance', 'Original Full Text Label Performance']
data_headers = ['scores_from_summary', 'scores_from_full_text']
for i in range(0,2):
st.markdown(f"###### {section_header_description[i]}")
report = classification_report(y_true = data2[['is_true_label']],
y_pred = (data2[[data_headers[i]]] >= threshold_value) * 1.0,
output_dict=True)
df_report = pd.DataFrame(report).transpose()
st.markdown(f"Threshold set for: {threshold_value}")
st.dataframe(df_report)
st.success('All done!')
st.balloons()