Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import streamlit as st | |
from keybert import KeyBERT | |
import spacy | |
nlp = spacy.load('en_core_web_sm') | |
# Reference: https://discuss.huggingface.co/t/summarization-on-long-documents/920/7 | |
def create_nest_sentences(document:str, token_max_length = 1024): | |
nested = [] | |
sent = [] | |
length = 0 | |
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli') | |
tokens = nlp(document) | |
for sentence in tokens.sents: | |
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer | |
length += len(tokens_in_sentence) | |
if length < token_max_length: | |
sent.append(sentence) | |
else: | |
nested.append(sent) | |
sent = [] | |
length = 0 | |
if sent: | |
nested.append(sent) | |
return nested | |
# Reference: https://github.com/MaartenGr/KeyBERT | |
def load_keyword_model(): | |
kw_model = KeyBERT() | |
return kw_model | |
def keyword_gen(kw_model, sequence:str): | |
keywords = kw_model.extract_keywords(sequence, | |
keyphrase_ngram_range=(1, 1), | |
stop_words='english', | |
use_mmr=True, | |
diversity=0.5, | |
top_n=10) | |
return keywords | |
# Reference: https://huggingface.co/facebook/bart-large-mnli | |
def load_summary_model(): | |
model_name = "facebook/bart-large-mnli" | |
summarizer = pipeline(task='summarization', model=model_name) | |
return summarizer | |
# def load_summary_model(): | |
# model_name = "facebook/bart-large-mnli" | |
# tokenizer = BartTokenizer.from_pretrained(model_name) | |
# model = BartForConditionalGeneration.from_pretrained(model_name) | |
# summarizer = pipeline(task='summarization', model=model, tokenizer=tokenizer, framework='pt') | |
# return summarizer | |
def summarizer_gen(summarizer, sequence:str, maximum_tokens:int, minimum_tokens:int): | |
output = summarizer(sequence, | |
num_beams=4, | |
length_penalty=2.0, | |
max_length=maximum_tokens, | |
min_length=minimum_tokens, | |
do_sample=False, | |
early_stopping = True, | |
no_repeat_ngram_size=3) | |
return output[0].get('summary_text') | |
# # Reference: https://www.datatrigger.org/post/nlp_hugging_face/ | |
# # Custom summarization pipeline (to handle long articles) | |
# def summarize(text, minimum_length_of_summary = 100): | |
# # Tokenize and truncate | |
# inputs = tokenizer_bart([text], truncation=True, max_length=1024, return_tensors='pt').to('cuda') | |
# # Generate summary | |
# summary_ids = model_bart.generate(inputs['input_ids'], num_beams=4, min_length = minimum_length_of_summary, max_length=400, early_stopping=True) | |
# # Untokenize | |
# return([tokenizer_bart.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids][0]) | |
# Reference: https://huggingface.co/spaces/team-zero-shot-nli/zero-shot-nli/blob/main/utils.py | |
def load_model(): | |
model_name = "facebook/bart-large-mnli" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
classifier = pipeline(task='zero-shot-classification', model=model, tokenizer=tokenizer, framework='pt') | |
return classifier | |
def classifier_zero(classifier, sequence:str, labels:list, multi_class:bool): | |
outputs = classifier(sequence, labels, multi_label=multi_class) | |
return outputs['labels'], outputs['scores'] | |