espejelomar's picture
first draft
48fb736
raw
history blame
3.79 kB
import torch
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
from datasets import load_dataset
from PIL import Image
import numpy as np
import paddlehub as hub
import random
from PIL import ImageDraw,ImageFont
import streamlit as st
@st.experimental_singleton
def load_bg_model():
bg_model = hub.Module(name='U2NetP', directory='assets/models/')
return bg_model
bg_model = load_bg_model()
def remove_bg(img):
result = bg_model.Segmentation(
images=[np.array(img)[:,:,::-1]],
paths=None,
batch_size=1,
input_size=320,
output_dir=None,
visualization=False)
output = result[0]
mask=Image.fromarray(output['mask'])
front=Image.fromarray(output['front'][:,:,::-1]).convert("RGBA")
front.putalpha(mask)
return front
meme_template=Image.open("./assets/pigeon_meme.jpg").convert("RGBA")
def make_meme(pigeon,text="Is this a pigeon?",show_text=True,remove_background=True):
meme=meme_template.copy()
approx_butterfly_center=(850,30)
if remove_background:
pigeon=remove_bg(pigeon)
else:
pigeon=Image.fromarray(pigeon).convert("RGBA")
random_rotate=random.randint(-30,30)
random_size=random.randint(150,200)
pigeon=pigeon.resize((random_size,random_size)).rotate(random_rotate,expand=True)
meme.alpha_composite(pigeon, approx_butterfly_center)
#ref: https://blog.lipsumarium.com/caption-memes-in-python/
def drawTextWithOutline(text, x, y):
draw.text((x-2, y-2), text,(0,0,0),font=font)
draw.text((x+2, y-2), text,(0,0,0),font=font)
draw.text((x+2, y+2), text,(0,0,0),font=font)
draw.text((x-2, y+2), text,(0,0,0),font=font)
draw.text((x, y), text, (255,255,255), font=font)
if show_text:
draw = ImageDraw.Draw(meme)
font_size=52
font = ImageFont.truetype("assets/impact.ttf", font_size)
w, h = draw.textsize(text, font) # measure the size the text will take
drawTextWithOutline(text, meme.width/2 - w/2, meme.height - font_size*2)
meme = meme.convert("RGB")
return meme
def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
dataset=load_dataset(dataset_name)
dataset=dataset.sort("sim_score")
return dataset["train"]
from transformers import BeitFeatureExtractor, BeitForImageClassification
emb_feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
emb_model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
def embed(images):
inputs = emb_feature_extractor(images=images, return_tensors="pt")
outputs = emb_model(**inputs,output_hidden_states= True)
last_hidden=outputs.hidden_states[-1]
pooler=emb_model.base_model.pooler
final_emb=pooler(last_hidden).detach().numpy()
return final_emb
def build_index():
dataset=get_train_data()
ds_with_embeddings = dataset.map(lambda x: {"beit_embeddings":embed(x["image"])},batched=True,batch_size=20)
ds_with_embeddings.add_faiss_index(column='beit_embeddings')
ds_with_embeddings.save_faiss_index('beit_embeddings', 'beit_index.faiss')
def get_dataset():
dataset=get_train_data()
dataset.load_faiss_index('beit_embeddings', 'beit_index.faiss')
return dataset
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512',model_version=None):
gan = LightweightGAN.from_pretrained(model_name,version=model_version)
gan.eval()
return gan
def generate(gan,batch_size=1):
with torch.no_grad():
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0., 1.)*255
ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
return ims
def interpolate():
pass