|
import tensorflow as tf |
|
import requests |
|
import gradio as gr |
|
|
|
inception_net = tf.keras.applications.MobileNetV2() |
|
|
|
|
|
respuesta = requests.get("https://git.io/JJkYN") |
|
etiquetas = respuesta.text.split("\n") |
|
|
|
def clasifica_imagen(inp): |
|
inp = inp.reshape((-1, 224, 224, 3)) |
|
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) |
|
prediction = inception_net.predict(inp).flatten() |
|
confidences = {etiquetas[i]: float(prediction[i]) for i in range(1000)} |
|
return confidences |
|
|
|
demo = gr.Interface(fn=clasifica_imagen, |
|
inputs=gr.Image(shape=(224, 224)), |
|
outputs=gr.Label(num_top_classes=3) |
|
) |
|
|
|
demo.launch() |