Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import streamlit as st | |
import os | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from resume_generation_gemini_pro import generate_gemini | |
from similarity_score_refined import similarity_main | |
from pdf2image import convert_from_path, convert_from_bytes | |
from docx import Document | |
import subprocess | |
import shutil | |
import tempfile | |
from PIL import Image | |
import io | |
from docx2pdf import convert | |
import docx | |
import numpy as np | |
# Create temporary directories | |
temp_dir = tempfile.mkdtemp() | |
import subprocess | |
def check_poppler(): | |
try: | |
subprocess.check_call(["poppler-utils", "--version"]) | |
print("Poppler is installed and ready to use.") | |
except subprocess.CalledProcessError: | |
print("Poppler is not installed. Please install it using 'apt-get install poppler-utils'.") | |
# Helper function to save uploaded files temporarily and return their paths | |
def save_uploaded_file(content): | |
if hasattr(content, 'name'): # Check if it's a file-like object | |
file_path = os.path.join("/tmp", content.name) | |
with open(file_path, "wb") as f: | |
f.write(content.read()) | |
else: # It's a string (the file contents) | |
file_path = os.path.join("/tmp", "temp_upload") | |
with open(file_path, "w") as f: | |
f.write(str(content)) | |
return file_path | |
# def save_uploaded_file(uploaded_file): | |
# file_path = os.path.join("/tmp", uploaded_file.name) | |
# with open(file_path, "wb") as f: | |
# f.write(uploaded_file.getbuffer()) | |
# return file_path | |
# Custom CSS for styling | |
st.markdown(""" | |
<style> | |
.main { | |
background-color: #f5f5f5; | |
font-family: Arial, sans-serif; | |
} | |
h1, h2 { | |
color: #4B7BE5; | |
text-align: center; | |
} | |
.stContainer { | |
# background-color: #000000; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
# max-width: 100%; | |
height: 30%; | |
width: 45%; | |
} | |
.logo-container { | |
# background-color: black; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
padding: 10px; | |
# max-width: 100%; | |
} | |
.logo-container img { | |
max-width: 60%; | |
height: 40%; | |
} | |
.stButton>button { | |
# background-color: #4B7BE5; | |
# color: white; | |
# font-size: 18px; | |
appearance: none; | |
background-color: transparent; | |
border: 0.125em solid #1A1A1A; | |
border-radius: 0.9375em; | |
box-sizing: border-box; | |
color: #3B3B3B; | |
cursor: pointer; | |
display: inline-block; | |
font-family: Roobert,-apple-system,BlinkMacSystemFont,"Segoe UI",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol"; | |
font-size: 16px; | |
font-weight: 600; | |
line-height: normal; | |
margin: 0; | |
min-height: 3.75em; | |
min-width: 0; | |
outline: none; | |
padding: 1em 2.3em; | |
text-align: center; | |
text-decoration: none; | |
transition: all 300ms cubic-bezier(.23, 1, 0.32, 1); | |
user-select: none; | |
-webkit-user-select: none; | |
touch-action: manipulation; | |
will-change: transform; | |
} | |
.stButton>button:hover { | |
color: #fff; | |
background-color: #1A1A1A; | |
box-shadow: rgba(0, 0, 0, 0.25) 0 8px 15px; | |
transform: translateY(-2px); | |
border: none !important; | |
} | |
/* From Uiverse.io by e-coders */ | |
# .stButton>btn:disabled { | |
# pointer-events: none; | |
# } | |
.stButton>:active { | |
box-shadow: none; | |
transform: translateY(0); | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Add ResumeMagic Logo | |
# st.image("logo.jpeg", use_container_width=True) | |
st.markdown('<div class="logo-container"></div>', unsafe_allow_html=True) | |
st.image("logo.jpeg", width=80) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Title and Description | |
st.title("Resume Tailoring with Google Generative AI") | |
st.markdown("### Upload your resume and job description to check similarity and generate a tailored resume.") | |
# Two columns for file uploaders | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_resume = st.file_uploader("Upload Current Resume (.docx or .pdf)", type=["docx", "pdf"], key="resume") | |
with col2: | |
uploaded_job_description = st.file_uploader("Upload Job Description (.docx or .pdf)", type=["docx", "pdf"], key="job_description") | |
def get_score(resume_path, job_description_path): | |
similarity_score = similarity_main(resume_path, job_description_path) | |
if isinstance(similarity_score, str) and '%' in similarity_score: | |
similarity_score = float(similarity_score.replace('%', '')) | |
# Display messages based on score range | |
if similarity_score < 50: | |
st.markdown('<p style="color: red; font-weight: bold;">Low chance, skills gap identified!</p>', unsafe_allow_html=True) | |
pie_colors = ['#FF4B4B', '#E5E5E5'] | |
elif 50 <= similarity_score < 70: | |
st.markdown('<p style="color: red; font-weight: bold;">Good chance but you can improve further!</p>', unsafe_allow_html=True) | |
pie_colors = ['#FFC107', '#E5E5E5'] | |
else: | |
st.markdown('<p style="color: green; font-weight: bold;">Excellent! You can submit your CV.</p>', unsafe_allow_html=True) | |
pie_colors = ['#4CAF50', '#E5E5E5'] | |
return similarity_score, pie_colors | |
def display_score(similarity, colors): | |
# Display Score as a Pie Chart | |
st.markdown(f"### Resume - Job Match: {int(similarity_score)}%") | |
# Pie chart to show similarity | |
fig, ax = plt.subplots() | |
# ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=['#4B7BE5', '#E5E5E5']) | |
ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=pie_colors) | |
ax.axis('equal') | |
st.pyplot(fig) | |
def save_file(file_name): | |
if hasattr(uploaded_file, 'name'): | |
file_path = os.path.join("/tmp", uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.read()) | |
else: | |
file_path = os.path.join("/tmp", "temp_upload") | |
with open(file_path, "w") as f: | |
f.write(uploaded_file) | |
return file_path | |
def save_docx_as_pdf(input_path, output_path='output.pdf'): | |
if input_path.lower().endswith('.docx'): | |
try: | |
# Attempt to use unoconv | |
subprocess.run(['unoconv', '-o', output_path, input_path]) | |
if not os.path.exists(output_path): | |
raise FileNotFoundError("unoconv failed to convert DOCX to PDF") | |
except FileNotFoundError: | |
# Fallback to text-based display | |
with open(output_path, 'w') as f: | |
f.write(input_path.read()) | |
elif input_path.lower().endswith('.pdf'): | |
shutil.copy(input_path, output_path) | |
else: | |
raise ValueError("Unsupported file format. Please upload a .docx or .pdf file.") | |
# def save_docx_as_pdf(input_path, output_path='output.pdf'): | |
# if input_path.lower().endswith('.docx'): | |
# from docx2pdf import convert | |
# convert(input_path, output_path) | |
# elif input_path.lower().endswith('.pdf'): | |
# shutil.copy(input_path, output_path) | |
# else: | |
# raise ValueError("Unsupported file format. Please upload a .docx or .pdf file.") | |
def save_docx_as_pdf2(doc_content, output_path='output.pdf'): | |
# Save document content as a .docx file | |
temp_doc_path = 'temp.docx' | |
doc = Document() | |
doc.add_paragraph(doc_content) | |
doc.save(temp_doc_path) | |
# Convert .docx to PDF | |
from docx2pdf import convert | |
convert(temp_doc_path, output_path) | |
os.remove(temp_doc_path) | |
# subprocess.run(['libreoffice', '--headless', '--convert-to', 'pdf', temp_doc_path, '--outdir', os.path.dirname(output_path)]) | |
def save_docx_as_pdf1(input_path, output_path='output.pdf'): | |
if input_path.lower().endswith('.docx'): | |
from docx2pdf import convert | |
convert(input_path, output_path) | |
elif input_path.lower().endswith('.pdf'): | |
shutil.copy(input_path, output_path) | |
else: | |
raise ValueError("Unsupported file format. Please upload a .docx or .pdf file.") | |
# if uploaded_resume.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
# save_docx_as_pdf(resume_path, 'uploaded_resume.pdf') | |
# display_doc_as_image('uploaded_resume.pdf') | |
def display_doc_as_image2(pdf_path): | |
try: | |
images = convert_from_path(pdf_path, size=800) | |
display(Image(filename=images[0].filename)) | |
except Exception as e: | |
st.error(f"Failed to display image: {str(e)}") | |
def display_doc_as_image(pdf_path): | |
try: | |
images = convert_from_path(pdf_path, size=800) | |
display(Image.fromarray(images[0])) | |
except Exception as e: | |
st.error(f"Failed to display image: {str(e)}") | |
def display_doc_as_image1(pdf_path): | |
try: | |
img = Image.open(pdf_path) | |
st.image(img) | |
except Exception as e: | |
st.error(f"Failed to display image: {str(e)}") | |
# def display_doc_as_image1(pdf_path): | |
# # poppler_path = 'usr/bin' | |
# # images = convert_from_path(pdf_path, poppler_path=poppler_path) | |
# # for img in images: | |
# # buf = BytesIO() | |
# # img.save(buf, format="PNG") | |
# # st.image(buf) | |
# from IPython.display import display, Image | |
# images = convert_from_bytes(open(pdf_path, 'rb').read(), size=800) | |
# display(images[0]) | |
# Process if files are uploaded | |
if uploaded_resume and uploaded_job_description: | |
# Save files | |
resume_path = save_uploaded_file(uploaded_resume) | |
job_description_path = save_uploaded_file(uploaded_job_description) | |
# Similarity Score Section | |
st.markdown("---") | |
# st.subheader("Check Job Match") | |
if st.button("Resume-JD Matching"): | |
with st.spinner("Computing Match"): | |
similarity_score, pie_colors = get_score(resume_path, job_description_path) | |
display_score(similarity_score, pie_colors) | |
#Autoscroll | |
st.markdown(""" | |
<script> | |
window.scrollTo(0, document.body.scrollHeight); | |
</script> | |
""", unsafe_allow_html=True) | |
# Generate Tailored Resume Section | |
st.markdown("---") | |
# st.subheader("Tailor Resume") | |
if st.button("Tailor Resume"): | |
with st.spinner("Generating resume..."): | |
generated_resume, new_resume_path = generate_gemini(resume_path, job_description_path) | |
# resume_path = save_uploaded_file(generated_resume) | |
# st.markdown("Generated Tailored Resume:") | |
# st.write(generated_resume) | |
#Autoscroll | |
st.markdown(""" | |
<script> | |
window.scrollTo(0, document.body.scrollHeight); | |
</script> | |
""", unsafe_allow_html=True) | |
# with col1: | |
# st.markdown("### Uploaded Resume:") | |
# # if resume_path.endswith('.docx'): | |
# # save_docx_as_pdf(uploaded_resume.getvalue().decode('utf-8'), 'uploaded_resume.pdf') | |
# # if uploaded_resume.type == "application/pdf": | |
# # display_doc_as_image(resume_path) | |
# # else: | |
# # save_docx_as_pdf(resume_path, 'uploaded_resume.pdf') | |
# display_doc_as_image(uploaded_resume) | |
# with st.spinner("Computing Match"): | |
# similarity_score, pie_colors = get_score(resume_path, job_description_path) | |
# display_score(similarity_score, pie_colors) | |
if generated_resume is not None: | |
from io import BytesIO | |
with tempfile.NamedTemporaryFile(suffix='.docx') as temp_doc: | |
doc = Document() | |
doc.add_paragraph(generated_resume) | |
doc.save(temp_doc.name) | |
# Convert DOCX to PDF | |
pdf_path = f"temp_{os.path.basename(temp_doc.name)}.pdf" | |
# convert(temp_doc.name, pdf_path) | |
save_docx_as_pdf(temp_doc.name, pdf_path) | |
# Display resumes side by side | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write("Uploaded Resume:") | |
display_doc_as_image(resume_path) | |
with col2: | |
st.write("Generated Resume:") | |
display_doc_as_image(pdf_path) | |
# Allow users to download both PDFs | |
st.download_button( | |
label="Download Uploaded Resume", | |
data=resume_bytes, | |
file_name="uploaded_resume.pdf", | |
mime="application/pdf" | |
) | |
st.download_button( | |
label="Download Generated Resume", | |
data=open(pdf_path, 'rb').read(), | |
file_name="generated_resume.pdf", | |
mime="application/pdf" | |
) | |
st.download_button( | |
label="Generated Resume (Word)", | |
data=resume_bytes, | |
file_name="tailored_resume.docx", | |
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
) | |
# doc = Document() | |
# doc.add_paragraph(generated_resume) | |
# resume_bytes = BytesIO() | |
# doc.save(resume_bytes) | |
# resume_bytes.seek(0) | |
# gen_resume_path = save_uploaded_file(resume_bytes) | |
# # uploaded_resume_path = save_uploaded_file(resume) | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# save_docx_as_pdf(resume_path, 'uploaded_resume.pdf') | |
# display_doc_as_image('uploaded_resume.pdf') | |
# with col2: | |
# st.markdown("### Tailored Resume:") | |
# save_docx_as_pdf(gen_resume_path, 'tailored_resume.pdf') | |
# display_doc_as_image('tailored_resume.pdf') | |
# st.download_button( | |
# label="Download Resume", | |
# data=resume_bytes, | |
# file_name="tailored_resume.docx", | |
# mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
# ) | |
else: | |
st.warning("Please upload both the resume and job description files.") | |