Spaces:
Running
Running
import math | |
from posixpath import basename, dirname, join | |
# import clip | |
from clip.model import convert_weights | |
import torch | |
import json | |
from torch import nn | |
from torch.nn import functional as nnf | |
from torch.nn.modules import activation | |
from torch.nn.modules.activation import ReLU | |
from torchvision import transforms | |
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) | |
from torchvision.models import ResNet | |
def process_prompts(conditional, prompt_list, conditional_map): | |
# DEPRECATED | |
# randomly sample a synonym | |
words = [conditional_map[int(i)] for i in conditional] | |
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words] | |
words = [w.replace('_', ' ') for w in words] | |
if prompt_list is not None: | |
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) | |
prompts = [prompt_list[i] for i in prompt_indices] | |
else: | |
prompts = ['a photo of {}'] * (len(words)) | |
return [promt.format(w) for promt, w in zip(prompts, words)] | |
class VITDenseBase(nn.Module): | |
def rescaled_pos_emb(self, new_size): | |
assert len(new_size) == 2 | |
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) | |
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T | |
return torch.cat([self.model.positional_embedding[:1], b]) | |
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): | |
with torch.no_grad(): | |
x_inp = nnf.interpolate(x_inp, (384, 384)) | |
x = self.model.patch_embed(x_inp) | |
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if self.model.dist_token is None: | |
x = torch.cat((cls_token, x), dim=1) | |
else: | |
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.model.pos_drop(x + self.model.pos_embed) | |
activations = [] | |
for i, block in enumerate(self.model.blocks): | |
x = block(x) | |
if i in extract_layers: | |
# permute to be compatible with CLIP | |
activations += [x.permute(1,0,2)] | |
x = self.model.norm(x) | |
x = self.model.head(self.model.pre_logits(x[:, 0])) | |
# again for CLIP compatibility | |
# x = x.permute(1, 0, 2) | |
return x, activations, None | |
def sample_prompts(self, words, prompt_list=None): | |
prompt_list = prompt_list if prompt_list is not None else self.prompt_list | |
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) | |
prompts = [prompt_list[i] for i in prompt_indices] | |
return [promt.format(w) for promt, w in zip(prompts, words)] | |
def get_cond_vec(self, conditional, batch_size): | |
# compute conditional from a single string | |
if conditional is not None and type(conditional) == str: | |
cond = self.compute_conditional(conditional) | |
cond = cond.repeat(batch_size, 1) | |
# compute conditional from string list/tuple | |
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: | |
assert len(conditional) == batch_size | |
cond = self.compute_conditional(conditional) | |
# use conditional directly | |
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: | |
cond = conditional | |
# compute conditional from image | |
elif conditional is not None and type(conditional) == torch.Tensor: | |
with torch.no_grad(): | |
cond, _, _ = self.visual_forward(conditional) | |
else: | |
raise ValueError('invalid conditional') | |
return cond | |
def compute_conditional(self, conditional): | |
import clip | |
dev = next(self.parameters()).device | |
if type(conditional) in {list, tuple}: | |
text_tokens = clip.tokenize(conditional).to(dev) | |
cond = self.clip_model.encode_text(text_tokens) | |
else: | |
if conditional in self.precomputed_prompts: | |
cond = self.precomputed_prompts[conditional].float().to(dev) | |
else: | |
text_tokens = clip.tokenize([conditional]).to(dev) | |
cond = self.clip_model.encode_text(text_tokens)[0] | |
return cond | |
class VITDensePredT(VITDenseBase): | |
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', | |
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False, | |
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False, | |
add_calibration=False, process_cond=None, not_pretrained=False): | |
super().__init__() | |
# device = 'cpu' | |
self.extract_layers = extract_layers | |
self.cond_layer = cond_layer | |
self.limit_to_clip_only = limit_to_clip_only | |
self.process_cond = None | |
if add_calibration: | |
self.calibration_conds = 1 | |
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None | |
self.add_activation1 = True | |
import timm | |
self.model = timm.create_model('vit_base_patch16_384', pretrained=True) | |
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond) | |
for p in self.model.parameters(): | |
p.requires_grad_(False) | |
import clip | |
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False) | |
# del self.clip_model.visual | |
self.token_shape = (14, 14) | |
# conditional | |
if reduce_cond is not None: | |
self.reduce_cond = nn.Linear(512, reduce_cond) | |
for p in self.reduce_cond.parameters(): | |
p.requires_grad_(False) | |
else: | |
self.reduce_cond = None | |
# self.film = AVAILABLE_BLOCKS['film'](512, 128) | |
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) | |
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) | |
# DEPRECATED | |
# self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))} | |
assert len(self.extract_layers) == depth | |
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) | |
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) | |
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) | |
trans_conv_ks = (16, 16) | |
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) | |
# refinement and trans conv | |
if learn_trans_conv_only: | |
for p in self.parameters(): | |
p.requires_grad_(False) | |
for p in self.trans_conv.parameters(): | |
p.requires_grad_(True) | |
if prompt == 'fixed': | |
self.prompt_list = ['a photo of a {}.'] | |
elif prompt == 'shuffle': | |
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] | |
elif prompt == 'shuffle+': | |
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', | |
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', | |
'a bad photo of a {}.', 'a photo of the {}.'] | |
elif prompt == 'shuffle_clip': | |
from models.clip_prompts import imagenet_templates | |
self.prompt_list = imagenet_templates | |
if process_cond is not None: | |
if process_cond == 'clamp' or process_cond[0] == 'clamp': | |
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2 | |
def clamp_vec(x): | |
return torch.clamp(x, -val, val) | |
self.process_cond = clamp_vec | |
elif process_cond.endswith('.pth'): | |
shift = torch.load(process_cond) | |
def add_shift(x): | |
return x + shift.to(x.device) | |
self.process_cond = add_shift | |
import pickle | |
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) | |
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} | |
def forward(self, inp_image, conditional=None, return_features=False, mask=None): | |
assert type(return_features) == bool | |
# inp_image = inp_image.to(self.model.positional_embedding.device) | |
if mask is not None: | |
raise ValueError('mask not supported') | |
# x_inp = normalize(inp_image) | |
x_inp = inp_image | |
bs, dev = inp_image.shape[0], x_inp.device | |
inp_image_size = inp_image.shape[2:] | |
cond = self.get_cond_vec(conditional, bs) | |
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) | |
activation1 = activations[0] | |
activations = activations[1:] | |
a = None | |
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)): | |
if a is not None: | |
a = reduce(activation) + a | |
else: | |
a = reduce(activation) | |
if i == self.cond_layer: | |
if self.reduce_cond is not None: | |
cond = self.reduce_cond(cond) | |
a = self.film_mul(cond) * a + self.film_add(cond) | |
a = block(a) | |
for block in self.extra_blocks: | |
a = a + block(a) | |
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens | |
size = int(math.sqrt(a.shape[2])) | |
a = a.view(bs, a.shape[1], size, size) | |
if self.trans_conv is not None: | |
a = self.trans_conv(a) | |
if self.upsample_proj is not None: | |
a = self.upsample_proj(a) | |
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') | |
a = nnf.interpolate(a, inp_image_size) | |
if return_features: | |
return a, visual_q, cond, [activation1] + activations | |
else: | |
return a, | |