pkiage's picture
correct title
dcdc7b7
raw
history blame
4.63 kB
from src.data.utils import *
from src.features.utils import *
from src.visualization.visualize import *
from app_utils import *
def main():
st.title("Time Series Autocorrelation Demo")
st.write("""
Autocorrelation is the correlation of a single time series with a lag copy of itself.\n
In the discrete case autocorrelation is also referred to as serial correlation.\n
In general autocorrelation usually refers to the lag-one autocorrelation.
""")
st.title("Data")
sample_data_selected = st.selectbox(
'Select sample data:', data_set_options)
data, graph_data = import_sample_data(
sample_data_selected, data_set_options)
with st.expander("Line Plot:"):
time_series_line_plot(data)
with st.expander("Box Plot:"):
time_series_box_plot(graph_data)
with st.expander("Dist Plot (histogram and violin plot):"):
time_series_violin_and_box_plot(data)
st.title("Time Series Autocorrelation")
data_array = data.values.squeeze()
data_series = pd.Series(data_array).dropna()
st.header("Auto-Correlation Function (ACF)")
st.write("""
ACF shows the entire autocorrelation function for different lags (not just lag-one).\n
Given the autocorrelation is a function of the lag any significant non-zero correlation imply the series can be forecast from the past.\n
Lag 0 autocorrelation will always be 1 since the values (y-axis) are the same at the same time (x-axis) for the same time series.
""")
acf_type = st.radio(
'Default ACF:', ('True', 'False'), key='acf_type')
default_acf_selected = acf_type == 'True'
if default_acf_selected:
acf_array = create_standard_acf_array(data_series)
if not default_acf_selected:
[confidence_level,
acf_nlags_selected,
acf_fft_selected,
acf_adjust_selected] = acf_settings()
alpha_selected = (100-confidence_level)/100
acf_array = acf(data_series,
alpha=alpha_selected,
nlags=acf_nlags_selected,
fft=acf_fft_selected,
adjusted=acf_adjust_selected)
corr_presentation(acf_array)
st.subheader("ACF Plot")
if default_acf_selected:
st.write('Given a confidence inverval of 95% (significance level of 0.05) there is a 5% chance that if true autocorrelation is zero, it will fall outside blue band.')
create_standard_corr_plot(data_series, plot_pacf=False)
if not default_acf_selected:
st.write(
f'Given a confidence inverval of {confidence_level}% (significance level of {alpha_selected}) there is a {alpha_selected*100}% chance that if true autocorrelation is zero, it will fall outside blue band.')
create_acf_plot(data_series,
alpha_selected,
acf_nlags_selected,
acf_fft_selected)
st.header("Partial Auto-Correlation Function (PACF)")
st.write("Unlike ACF, PACF controls for other lags.")
st.write(
"PACF represents how significant adding lag n is when you already have lag n-1.")
pacf_type = st.radio(
'Default PACF:', ('True', 'False'), key='pacf_type')
default_pacf_selected = pacf_type == 'True'
if default_pacf_selected:
pacf_array = create_standard_pacf_array(data_series)
if not default_pacf_selected:
[confidence_level,
pacf_nlags_selected,
pacf_calculation_method] = pacf_settings()
alpha_selected = (100-confidence_level)/100
pacf_array = pacf(data_series,
alpha=alpha_selected,
nlags=pacf_nlags_selected,
method=pacf_calculation_method)
corr_presentation(pacf_array)
st.subheader("PACF Plot")
if default_pacf_selected:
st.write('Given a confidence inverval of 95% (significance level of 0.05) there is a 5% chance that if true autocorrelation is zero, it will fall outside blue band.')
create_standard_corr_plot(data_series, plot_pacf=True)
if not default_pacf_selected:
st.write(
f'Given a confidence inverval of {confidence_level}% (significance level of {alpha_selected}) there is a {alpha_selected*100}% chance that if true autocorrelation is zero, it will fall outside blue band.')
create_pacf_plot(data_series,
alpha_selected,
pacf_nlags_selected,
pacf_calculation_method)
if __name__ == "__main__":
main()