Spaces:
Runtime error
Runtime error
from typing import List | |
import torch | |
import numpy as np | |
import utils | |
from pytorch_grad_cam.base_cam import BaseCAM | |
from pytorch_grad_cam.utils import get_2d_projection | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
class YoloGradCAM(BaseCAM): | |
def __init__(self, | |
model, | |
target_layers, | |
scaled_anchors, | |
use_cuda=False, | |
reshape_transform=None): | |
super(YoloGradCAM, self).__init__(model, | |
target_layers, | |
use_cuda, | |
reshape_transform, | |
uses_gradients=False) | |
self.scaled_anchors = scaled_anchors | |
def get_cam_image(self, | |
input_tensor: torch.Tensor, | |
target_layer: torch.nn.Module, | |
targets: List[torch.nn.Module], | |
activations: torch.Tensor, | |
grads: torch.Tensor, | |
eigen_smooth: bool = False) -> np.ndarray: | |
return get_2d_projection(activations) | |
def forward(self, | |
input_tensor: torch.Tensor, | |
targets: List[torch.nn.Module], | |
eigen_smooth: bool = False) -> np.ndarray: | |
if self.cuda: | |
input_tensor = input_tensor.cuda() | |
if self.compute_input_gradient: | |
input_tensor = torch.autograd.Variable(input_tensor, | |
requires_grad=True) | |
outputs = self.activations_and_grads(input_tensor) | |
if targets is None: | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = outputs[i].shape | |
anchor = self.scaled_anchors[i] | |
boxes_scale_i = utils.cells_to_bboxes( | |
outputs[i], anchor, S=S, is_preds=True | |
) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = utils.non_max_suppression( | |
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint", | |
) | |
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) | |
target_categories = [box[0] for box in nms_boxes] | |
targets = [ClassifierOutputTarget( | |
category) for category in target_categories] | |
if self.uses_gradients: | |
self.model.zero_grad() | |
loss = sum([target(output) | |
for target, output in zip(targets, outputs)]) | |
loss.backward(retain_graph=True) | |
# In most of the saliency attribution papers, the saliency is | |
# computed with a single target layer. | |
# Commonly it is the last convolutional layer. | |
# Here we support passing a list with multiple target layers. | |
# It will compute the saliency image for every image, | |
# and then aggregate them (with a default mean aggregation). | |
# This gives you more flexibility in case you just want to | |
# use all conv layers for example, all Batchnorm layers, | |
# or something else. | |
cam_per_layer = self.compute_cam_per_layer(input_tensor, | |
targets, | |
eigen_smooth) | |
return self.aggregate_multi_layers(cam_per_layer) |