Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import gradio as gr | |
from tsai_gpt.tokenizer import Tokenizer | |
import lightning as L | |
from lightning.fabric.loggers import CSVLogger | |
from pathlib import Path | |
from tsai_gpt.utils import num_parameters, load_checkpoint, get_default_supported_precision | |
from tsai_gpt.model import GPT, Block, Config | |
model_name = "pythia-160m" | |
name = "redpajama" | |
out_dir = Path("out") / name | |
log_interval = 100 | |
precision = get_default_supported_precision(False) | |
logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval) | |
fabric = L.Fabric(devices=1, strategy="auto", precision=precision, loggers=logger) | |
config = Config.from_name(model_name) | |
def _init_weights(module: nn.Module) -> None: | |
"""Meant to be used with `gpt.apply(gpt._init_weights)`.""" | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
with fabric.init_module(empty_init=True): | |
model = GPT(config) | |
model.apply(_init_weights) | |
model.apply(_init_weights) | |
checkpoint_path = Path("out/redpajama/iter-025000-ckpt.pth") | |
load_checkpoint(fabric, model, checkpoint_path) | |
# print(model.transformer.h[0].mlp.fc.weight) | |
# fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.") | |
# fabric.print(f"Total parameters {num_parameters(model):,}") | |
weight_decay = 1e-1 | |
beta1 = 0.9 | |
beta2 = 0.95 | |
learning_rate = 6e-3 | |
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")} | |
model = fabric.setup(model) | |
optimizer = torch.optim.AdamW( | |
model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False | |
) | |
# model_copy = model | |
optimizer = fabric.setup_optimizers(optimizer) | |
state = {"model": model, "optimizer": optimizer, "hparams": hparams, "iter_num": 0, "step_count": 0} | |
resume = max(out_dir.glob("*.pth"), key=lambda p: int(p.name.split("-")[1])) | |
if resume: | |
fabric.print(f"Loading model from {resume}") | |
fabric.load(resume, state) | |
deviceType = 'cuda' if torch.cuda.is_available() else 'cpu' | |
m = model.to(deviceType) | |
tokenizer_gpt = Tokenizer(checkpoint_dir=Path("checkpoints/meta-llama/Llama-2-7b-chat-hf")) | |
def fn_query_on_load(): | |
return "Biofuels would disrupt" | |
def generate_output(prompt, max_new_tokens=200, temperature=0.8, top_k=50): | |
m.eval() | |
encoded_text = tokenizer_gpt.encode(prompt) | |
# print('--------------------encoded text = ',encoded_text) | |
reshaped_tensor = torch.unsqueeze(encoded_text, 0).to(deviceType) | |
# print('--------------------reshaped_tensor = ',reshaped_tensor) | |
out_text = tokenizer_gpt.decode( | |
m.generate(reshaped_tensor, max_new_tokens=max_new_tokens, temperature=0.8, top_k=50)[0]) | |
m.train() | |
return { | |
output: out_text | |
} | |
with gr.Blocks() as app: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# MiniGPT - GPT Training on LLaMa with redpajama dataset | |
### Enter a context to generate automated text " | |
""") | |
with gr.Row(visible=True): | |
search_text = gr.Textbox(value=fn_query_on_load, placeholder='Enter prompt..', label='Enter Prompt') | |
with gr.Row(): | |
submit_btn = gr.Button("Submit", variant='primary') | |
clear_btn = gr.ClearButton() | |
with gr.Row(): | |
with gr.Row(): | |
output = gr.Textbox(lines=15, interactive=False, label='Out Box') | |
def clear_data(): | |
return { | |
output: None, | |
search_text: None | |
} | |
clear_btn.click(clear_data, None, [output, search_text]) | |
submit_btn.click( | |
generate_output, | |
search_text, | |
output | |
) | |
''' | |
Launch the app | |
''' | |
app.queue().launch() |