Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,91 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
# import tensorflow as tf
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Function to display an example image
|
8 |
def display_example_image(url):
|
9 |
response = requests.get(url)
|
10 |
img = Image.open(BytesIO(response.content))
|
11 |
st.image(img, caption='Generated Image', use_column_width=True)
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Placeholder function for generating images (replace this with your actual generative AI code)
|
14 |
def generate_images(prompt, num_images=3):
|
15 |
# This is a placeholder function. Replace it with your actual image generation code.
|
16 |
# Here, we are just returning the same example image multiple times for demonstration.
|
17 |
-
image_url =
|
18 |
response = requests.get(image_url)
|
19 |
img = Image.open(BytesIO(response.content))
|
|
|
20 |
return [img] * num_images
|
21 |
-
|
22 |
-
|
23 |
title_center = """
|
24 |
<style>
|
25 |
.title{
|
26 |
text-align: center
|
27 |
}
|
28 |
</style>
|
29 |
-
|
30 |
"""
|
31 |
# Title of the app
|
32 |
st.markdown(title_center, unsafe_allow_html=True)
|
33 |
-
|
34 |
title_container = """
|
35 |
<h1 class="title">AutoFloor</h1>
|
36 |
"""
|
37 |
-
|
38 |
st.markdown(title_container, unsafe_allow_html=True)
|
39 |
# Text input for user prompt
|
40 |
user_prompt = st.text_input("Enter your prompt here:")
|
41 |
-
|
42 |
# file= st.file_uploader ("Unggah file Gambar", type = ["jpg", "png"])
|
43 |
-
|
44 |
# model = tf.keras.models.load_model('L00005_HL512_bagus.h5')
|
45 |
-
|
46 |
st.markdown("""
|
47 |
<style>.element-container:has(#button-after) + div button {
|
48 |
margin: 0 auto;
|
49 |
display: block;
|
50 |
}</style>""", unsafe_allow_html=True)
|
51 |
-
|
52 |
-
|
53 |
st.markdown('<span id="button-after"></span>', unsafe_allow_html=True)
|
54 |
# Generate and display images in a 3x3 grid
|
55 |
if st.button('Generate Images', type="primary"):
|
56 |
if user_prompt:
|
57 |
st.write(f"Prompt: {user_prompt}")
|
58 |
-
image_url = "https://wpmedia.roomsketcher.com/content/uploads/2022/01/06145940/What-is-a-floor-plan-with-dimensions.png" # Replace with a valid image URL
|
59 |
# Generate images based on the user's prompt
|
60 |
-
generated_images = generate_images(user_prompt, num_images=3)
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
html_code = f"""
|
64 |
<!DOCTYPE html>
|
65 |
<html lang="en">
|
@@ -76,7 +102,7 @@ if st.button('Generate Images', type="primary"):
|
|
76 |
</head>
|
77 |
<body>
|
78 |
<div id="image-container" style="text-align: center;">
|
79 |
-
<img id="zoomable-image" class="zoomable-image" src="{image_url}" alt="Zoomable Image" style="max-width: 100%; height: auto;">
|
80 |
</div>
|
81 |
<script>
|
82 |
document.addEventListener('DOMContentLoaded', (event) => {{
|
@@ -87,7 +113,7 @@ if st.button('Generate Images', type="primary"):
|
|
87 |
bounds: false,
|
88 |
boundsPadding: 0.1
|
89 |
}});
|
90 |
-
|
91 |
image.addEventListener('click', () => {{
|
92 |
const currentTransform = image.style.transform;
|
93 |
if (currentTransform.includes('matrix')) {{
|
@@ -96,38 +122,38 @@ if st.button('Generate Images', type="primary"):
|
|
96 |
panzoomInstance.zoomAbs(image.width / 2, image.height / 2, 3);
|
97 |
}}
|
98 |
}});
|
99 |
-
|
100 |
image.addEventListener('dblclick', () => {{
|
101 |
const xys = panzoomInstance.getTransform()
|
102 |
-
if(xys.scale > 1) {{
|
103 |
const fScale = 1 - xys.scale
|
104 |
const fixeX = xys.x / fScale
|
105 |
const fixeY = xys.y / fScale
|
106 |
panzoomInstance.smoothZoomAbs(fixeX, fixeY, 1)
|
107 |
-
}} else {{
|
108 |
panzoomInstance.moveBy(-xys.x, -xys.y, true)
|
109 |
panzoomInstance.smoothZoomAbs(xys.x, xys.y, 1)
|
110 |
}}
|
111 |
-
panzoomInstance.moveTo(0, 0)
|
112 |
-
panzoomInstance.zoomAbs(0, 0, 1)
|
113 |
}});
|
114 |
}});
|
115 |
</script>
|
116 |
</body>
|
117 |
</html>
|
118 |
"""
|
119 |
-
|
120 |
# # Embed the HTML and JavaScript into the Streamlit app
|
121 |
# st.components.v1.html(html_code, height=300)
|
122 |
-
|
123 |
-
|
124 |
# Display images in a 3x3 grid
|
125 |
cols = st.columns(3)
|
126 |
for i in range(3):
|
127 |
# for j in range(3):
|
128 |
# with cols[j]:
|
129 |
# st.image(generated_images[i * 3 + j], use_column_width=True)
|
130 |
-
|
131 |
# Display the image with zoom effect
|
132 |
# container_style = """
|
133 |
# <div class="container">
|
@@ -137,4 +163,5 @@ if st.button('Generate Images', type="primary"):
|
|
137 |
# st.markdown(container_style, unsafe_allow_html=True)
|
138 |
st.components.v1.html(html_code, height=600)
|
139 |
else:
|
140 |
-
st.write("Please enter a prompt.")
|
|
|
|
1 |
+
[3:45 PM] Widyanto, Achmad
|
2 |
import streamlit as st
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
# import tensorflow as tf
|
7 |
+
|
8 |
+
import streamlit as st
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
import torch
|
11 |
+
|
12 |
+
#model_id = "CompVis/stable-diffusion-v1-4"
|
13 |
+
#pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
14 |
+
|
15 |
+
# Ensure the model is using the CPU
|
16 |
+
#pipe = pipe.to("cpu")
|
17 |
+
|
18 |
+
image_html = ""
|
19 |
+
|
20 |
# Function to display an example image
|
21 |
def display_example_image(url):
|
22 |
response = requests.get(url)
|
23 |
img = Image.open(BytesIO(response.content))
|
24 |
st.image(img, caption='Generated Image', use_column_width=True)
|
25 |
+
|
26 |
+
#function to generate AI based images using Huggingface Diffusers
|
27 |
+
def generate_images_using_huggingface_diffusers(text):
|
28 |
+
# pipe = StableDiffusionPipeline.from_pretrained("sd-dreambooth-library/cat-toy", torch_dtype=torch.float16)
|
29 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32)
|
30 |
+
pipe = pipe.to("cpu")
|
31 |
+
prompt = text
|
32 |
+
image = pipe(prompt).images[0]
|
33 |
+
return image
|
34 |
+
|
35 |
# Placeholder function for generating images (replace this with your actual generative AI code)
|
36 |
def generate_images(prompt, num_images=3):
|
37 |
# This is a placeholder function. Replace it with your actual image generation code.
|
38 |
# Here, we are just returning the same example image multiple times for demonstration.
|
39 |
+
image_url = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images # Replace with a valid image URL
|
40 |
response = requests.get(image_url)
|
41 |
img = Image.open(BytesIO(response.content))
|
42 |
+
image_html = image_url
|
43 |
return [img] * num_images
|
44 |
+
|
45 |
+
|
46 |
title_center = """
|
47 |
<style>
|
48 |
.title{
|
49 |
text-align: center
|
50 |
}
|
51 |
</style>
|
52 |
+
|
53 |
"""
|
54 |
# Title of the app
|
55 |
st.markdown(title_center, unsafe_allow_html=True)
|
56 |
+
|
57 |
title_container = """
|
58 |
<h1 class="title">AutoFloor</h1>
|
59 |
"""
|
60 |
+
|
61 |
st.markdown(title_container, unsafe_allow_html=True)
|
62 |
# Text input for user prompt
|
63 |
user_prompt = st.text_input("Enter your prompt here:")
|
64 |
+
|
65 |
# file= st.file_uploader ("Unggah file Gambar", type = ["jpg", "png"])
|
66 |
+
|
67 |
# model = tf.keras.models.load_model('L00005_HL512_bagus.h5')
|
68 |
+
|
69 |
st.markdown("""
|
70 |
<style>.element-container:has(#button-after) + div button {
|
71 |
margin: 0 auto;
|
72 |
display: block;
|
73 |
}</style>""", unsafe_allow_html=True)
|
74 |
+
|
75 |
+
|
76 |
st.markdown('<span id="button-after"></span>', unsafe_allow_html=True)
|
77 |
# Generate and display images in a 3x3 grid
|
78 |
if st.button('Generate Images', type="primary"):
|
79 |
if user_prompt:
|
80 |
st.write(f"Prompt: {user_prompt}")
|
81 |
+
#image_url = "https://wpmedia.roomsketcher.com/content/uploads/2022/01/06145940/What-is-a-floor-plan-with-dimensions.png" # Replace with a valid image URL
|
82 |
# Generate images based on the user's prompt
|
83 |
+
#generated_images = generate_images(user_prompt, num_images=3)
|
84 |
+
image_output = generate_images_using_huggingface_diffusers(user_prompt)
|
85 |
+
st.info("Generating image.....")
|
86 |
+
st.success("Image Generated Successfully")
|
87 |
+
st.image(image_output, caption="Generated by Huggingface Diffusers")
|
88 |
+
|
89 |
html_code = f"""
|
90 |
<!DOCTYPE html>
|
91 |
<html lang="en">
|
|
|
102 |
</head>
|
103 |
<body>
|
104 |
<div id="image-container" style="text-align: center;">
|
105 |
+
<img id="zoomable-image" class="zoomable-image" src="{{image_url}}" alt="Zoomable Image" style="max-width: 100%; height: auto;">
|
106 |
</div>
|
107 |
<script>
|
108 |
document.addEventListener('DOMContentLoaded', (event) => {{
|
|
|
113 |
bounds: false,
|
114 |
boundsPadding: 0.1
|
115 |
}});
|
116 |
+
|
117 |
image.addEventListener('click', () => {{
|
118 |
const currentTransform = image.style.transform;
|
119 |
if (currentTransform.includes('matrix')) {{
|
|
|
122 |
panzoomInstance.zoomAbs(image.width / 2, image.height / 2, 3);
|
123 |
}}
|
124 |
}});
|
125 |
+
|
126 |
image.addEventListener('dblclick', () => {{
|
127 |
const xys = panzoomInstance.getTransform()
|
128 |
+
if(xys.scale > 1) {{
|
129 |
const fScale = 1 - xys.scale
|
130 |
const fixeX = xys.x / fScale
|
131 |
const fixeY = xys.y / fScale
|
132 |
panzoomInstance.smoothZoomAbs(fixeX, fixeY, 1)
|
133 |
+
}} else {{
|
134 |
panzoomInstance.moveBy(-xys.x, -xys.y, true)
|
135 |
panzoomInstance.smoothZoomAbs(xys.x, xys.y, 1)
|
136 |
}}
|
137 |
+
panzoomInstance.moveTo(0, 0)
|
138 |
+
panzoomInstance.zoomAbs(0, 0, 1)
|
139 |
}});
|
140 |
}});
|
141 |
</script>
|
142 |
</body>
|
143 |
</html>
|
144 |
"""
|
145 |
+
|
146 |
# # Embed the HTML and JavaScript into the Streamlit app
|
147 |
# st.components.v1.html(html_code, height=300)
|
148 |
+
|
149 |
+
|
150 |
# Display images in a 3x3 grid
|
151 |
cols = st.columns(3)
|
152 |
for i in range(3):
|
153 |
# for j in range(3):
|
154 |
# with cols[j]:
|
155 |
# st.image(generated_images[i * 3 + j], use_column_width=True)
|
156 |
+
|
157 |
# Display the image with zoom effect
|
158 |
# container_style = """
|
159 |
# <div class="container">
|
|
|
163 |
# st.markdown(container_style, unsafe_allow_html=True)
|
164 |
st.components.v1.html(html_code, height=600)
|
165 |
else:
|
166 |
+
st.write("Please enter a prompt.")
|
167 |
+
|