dr_House / app.py
pivovalera2012's picture
Update app.py
bb09273 verified
raw
history blame
1.09 kB
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
HF_TOKEN = os.getenv('token')
MODEL_NAME = 'meta-llama/Llama-2-7b-chat-hf'
ADAPTERS_NAME = 'pivovalera2012/Llama-2-7b-Dr-Hous-test'
model_trained = AutoModelForCausalLM.from_pretrained(MODEL_NAME,
token=HF_TOKEN)
model_trained = PeftModel.from_pretrained(model_trained, ADAPTERS_NAME)
model_trained = model_trained.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def generate_text(prompt):
encoding = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model_trained.generate(
input_ids = encoding.input_ids,
attention_mask = encoding.attention_mask,
generation_config = generation_config
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.split(':')
return answer[1]
demo = gr.Interface(
generate_text,
inputs=["textbox"],
outputs=["textbox"]
)
demo.launch()