Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
HF_TOKEN = os.getenv('token') | |
MODEL_NAME = 'meta-llama/Llama-2-7b-chat-hf' | |
ADAPTERS_NAME = 'pivovalera2012/Llama-2-7b-Dr-Hous-test' | |
model_trained = AutoModelForCausalLM.from_pretrained(MODEL_NAME, | |
token=HF_TOKEN) | |
model_trained = PeftModel.from_pretrained(model_trained, ADAPTERS_NAME) | |
model_trained = model_trained.merge_and_unload() | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
def generate_text(prompt): | |
encoding = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_trained.generate( | |
input_ids = encoding.input_ids, | |
attention_mask = encoding.attention_mask, | |
generation_config = generation_config | |
) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
answer = answer.split(':') | |
return answer[1] | |
demo = gr.Interface( | |
generate_text, | |
inputs=["textbox"], | |
outputs=["textbox"] | |
) | |
demo.launch() |