Upload 2 files
Browse files- app.py +12 -10
- vip_runner.py +22 -32
app.py
CHANGED
|
@@ -15,9 +15,9 @@ def run_vip(
|
|
| 15 |
n_samples_init,
|
| 16 |
n_samples_opt,
|
| 17 |
n_iters,
|
| 18 |
-
|
| 19 |
openai_api_key,
|
| 20 |
-
progress=gr.Progress(track_tqdm=
|
| 21 |
):
|
| 22 |
|
| 23 |
if not openai_api_key:
|
|
@@ -53,7 +53,7 @@ def run_vip(
|
|
| 53 |
}
|
| 54 |
|
| 55 |
vlm = GPT4V(openai_api_key=openai_api_key)
|
| 56 |
-
|
| 57 |
vlm,
|
| 58 |
im,
|
| 59 |
query,
|
|
@@ -62,9 +62,10 @@ def run_vip(
|
|
| 62 |
n_samples_init=n_samples_init,
|
| 63 |
n_samples_opt=n_samples_opt,
|
| 64 |
n_iters=n_iters,
|
| 65 |
-
|
| 66 |
)
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
examples = [
|
|
@@ -117,11 +118,11 @@ The Info textbox will show the final selected pixel coordinate that PIVOT conver
|
|
| 117 |
""".strip())
|
| 118 |
|
| 119 |
gr.Markdown(
|
| 120 |
-
'## Example Images and Queries\n Drag images into the image box below'
|
| 121 |
)
|
| 122 |
with gr.Row(equal_height=True):
|
| 123 |
for example in examples:
|
| 124 |
-
gr.Image(value=example['im_path'], label=example['desc'])
|
| 125 |
|
| 126 |
gr.Markdown('## New Query')
|
| 127 |
with gr.Row():
|
|
@@ -160,8 +161,8 @@ The Info textbox will show the final selected pixel coordinate that PIVOT conver
|
|
| 160 |
inp_n_iters = gr.Slider(
|
| 161 |
label='N Iterations', minimum=1, maximum=5, value=3, step=1
|
| 162 |
)
|
| 163 |
-
|
| 164 |
-
label='N
|
| 165 |
)
|
| 166 |
btn_run = gr.Button('Run')
|
| 167 |
|
|
@@ -171,6 +172,7 @@ The Info textbox will show the final selected pixel coordinate that PIVOT conver
|
|
| 171 |
columns=4,
|
| 172 |
rows=1,
|
| 173 |
interactive=False,
|
|
|
|
| 174 |
)
|
| 175 |
out_info = gr.Textbox(label='Info', lines=1)
|
| 176 |
|
|
@@ -182,7 +184,7 @@ The Info textbox will show the final selected pixel coordinate that PIVOT conver
|
|
| 182 |
inp_n_samples_init,
|
| 183 |
inp_n_samples_opt,
|
| 184 |
inp_n_iters,
|
| 185 |
-
|
| 186 |
inp_openai_api_key,
|
| 187 |
],
|
| 188 |
outputs=[out_ims, out_info],
|
|
|
|
| 15 |
n_samples_init,
|
| 16 |
n_samples_opt,
|
| 17 |
n_iters,
|
| 18 |
+
n_parallel_trials,
|
| 19 |
openai_api_key,
|
| 20 |
+
progress=gr.Progress(track_tqdm=False),
|
| 21 |
):
|
| 22 |
|
| 23 |
if not openai_api_key:
|
|
|
|
| 53 |
}
|
| 54 |
|
| 55 |
vlm = GPT4V(openai_api_key=openai_api_key)
|
| 56 |
+
vip_gen = vip_runner(
|
| 57 |
vlm,
|
| 58 |
im,
|
| 59 |
query,
|
|
|
|
| 62 |
n_samples_init=n_samples_init,
|
| 63 |
n_samples_opt=n_samples_opt,
|
| 64 |
n_iters=n_iters,
|
| 65 |
+
n_parallel_trials=n_parallel_trials,
|
| 66 |
)
|
| 67 |
+
for rst in vip_gen:
|
| 68 |
+
yield rst
|
| 69 |
|
| 70 |
|
| 71 |
examples = [
|
|
|
|
| 118 |
""".strip())
|
| 119 |
|
| 120 |
gr.Markdown(
|
| 121 |
+
'## Example Images and Queries\n Drag images into the image box below (Try safari on Mac if dragging does not work)'
|
| 122 |
)
|
| 123 |
with gr.Row(equal_height=True):
|
| 124 |
for example in examples:
|
| 125 |
+
gr.Image(value=example['im_path'], type='numpy', label=example['desc'])
|
| 126 |
|
| 127 |
gr.Markdown('## New Query')
|
| 128 |
with gr.Row():
|
|
|
|
| 161 |
inp_n_iters = gr.Slider(
|
| 162 |
label='N Iterations', minimum=1, maximum=5, value=3, step=1
|
| 163 |
)
|
| 164 |
+
inp_n_parallel_trials = gr.Slider(
|
| 165 |
+
label='N Parallel Trials', minimum=1, maximum=3, value=1, step=1
|
| 166 |
)
|
| 167 |
btn_run = gr.Button('Run')
|
| 168 |
|
|
|
|
| 172 |
columns=4,
|
| 173 |
rows=1,
|
| 174 |
interactive=False,
|
| 175 |
+
object_fit="contain", height="auto"
|
| 176 |
)
|
| 177 |
out_info = gr.Textbox(label='Info', lines=1)
|
| 178 |
|
|
|
|
| 184 |
inp_n_samples_init,
|
| 185 |
inp_n_samples_opt,
|
| 186 |
inp_n_iters,
|
| 187 |
+
inp_n_parallel_trials,
|
| 188 |
inp_openai_api_key,
|
| 189 |
],
|
| 190 |
outputs=[out_ims, out_info],
|
vip_runner.py
CHANGED
|
@@ -5,6 +5,7 @@ import re
|
|
| 5 |
|
| 6 |
import cv2
|
| 7 |
from tqdm import trange
|
|
|
|
| 8 |
import vip
|
| 9 |
|
| 10 |
|
|
@@ -48,7 +49,11 @@ def vip_perform_selection(prompter, vlm, im, desc, arm_coord, samples, top_n):
|
|
| 48 |
prompt_seq = [make_prompt(desc, top_n=top_n), encoded_image_circles]
|
| 49 |
response = vlm.query(prompt_seq)
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
return arrow_ids, image_circles_np
|
| 53 |
|
| 54 |
|
|
@@ -61,7 +66,7 @@ def vip_runner(
|
|
| 61 |
n_samples_init=25,
|
| 62 |
n_samples_opt=10,
|
| 63 |
n_iters=3,
|
| 64 |
-
|
| 65 |
):
|
| 66 |
"""VIP."""
|
| 67 |
|
|
@@ -72,10 +77,11 @@ def vip_runner(
|
|
| 72 |
output_ims = []
|
| 73 |
arm_coord = (int(im.shape[1] / 2), int(im.shape[0] / 2))
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
center_mean = action_spec["loc"]
|
| 77 |
center_std = action_spec["scale"]
|
| 78 |
-
selected_samples = []
|
| 79 |
for itr in trange(n_iters):
|
| 80 |
if itr == 0:
|
| 81 |
style["num_samples"] = n_samples_init
|
|
@@ -96,6 +102,7 @@ def vip_runner(
|
|
| 96 |
image_circles_np, selected_samples, arm_coord
|
| 97 |
)
|
| 98 |
output_ims.append(image_circles_marked_np)
|
|
|
|
| 99 |
|
| 100 |
# if at last iteration, pick one answer out of the selected ones
|
| 101 |
if itr == n_iters - 1:
|
|
@@ -112,30 +119,11 @@ def vip_runner(
|
|
| 112 |
im, selected_samples, arm_coord
|
| 113 |
)
|
| 114 |
output_ims.append(image_circles_marked_np)
|
|
|
|
|
|
|
| 115 |
center_mean, center_std = prompter.fit(arrow_ids, samples)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
return (
|
| 119 |
-
output_ims,
|
| 120 |
-
prompter.action_to_coord(center_mean, im, arm_coord).xy,
|
| 121 |
-
selected_samples,
|
| 122 |
-
)
|
| 123 |
-
else:
|
| 124 |
-
new_samples = []
|
| 125 |
-
for i in range(3):
|
| 126 |
-
out_ims, _, cur_samples = vip_runner(
|
| 127 |
-
vlm=vlm,
|
| 128 |
-
im=im,
|
| 129 |
-
desc=desc,
|
| 130 |
-
style=style,
|
| 131 |
-
action_spec=action_spec,
|
| 132 |
-
n_samples_init=n_samples_init,
|
| 133 |
-
n_samples_opt=n_samples_opt,
|
| 134 |
-
n_iters=n_iters,
|
| 135 |
-
recursion_level=recursion_level - 1,
|
| 136 |
-
)
|
| 137 |
-
output_ims += out_ims
|
| 138 |
-
new_samples += cur_samples
|
| 139 |
# adjust sample label to avoid duplications
|
| 140 |
for sample_id in range(len(new_samples)):
|
| 141 |
new_samples[sample_id].label = str(sample_id)
|
|
@@ -154,10 +142,12 @@ def vip_runner(
|
|
| 154 |
output_ims.append(image_circles_marked_np)
|
| 155 |
center_mean, _ = prompter.fit(arrow_ids, new_samples)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
| 163 |
return [], "Unable to understand query"
|
|
|
|
| 5 |
|
| 6 |
import cv2
|
| 7 |
from tqdm import trange
|
| 8 |
+
import numpy as np
|
| 9 |
import vip
|
| 10 |
|
| 11 |
|
|
|
|
| 49 |
prompt_seq = [make_prompt(desc, top_n=top_n), encoded_image_circles]
|
| 50 |
response = vlm.query(prompt_seq)
|
| 51 |
|
| 52 |
+
try:
|
| 53 |
+
arrow_ids = extract_json(response, "points")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(e)
|
| 56 |
+
arrow_ids = []
|
| 57 |
return arrow_ids, image_circles_np
|
| 58 |
|
| 59 |
|
|
|
|
| 66 |
n_samples_init=25,
|
| 67 |
n_samples_opt=10,
|
| 68 |
n_iters=3,
|
| 69 |
+
n_parallel_trials=1,
|
| 70 |
):
|
| 71 |
"""VIP."""
|
| 72 |
|
|
|
|
| 77 |
output_ims = []
|
| 78 |
arm_coord = (int(im.shape[1] / 2), int(im.shape[0] / 2))
|
| 79 |
|
| 80 |
+
new_samples = []
|
| 81 |
+
center_mean = action_spec["loc"]
|
| 82 |
+
for i in range(n_parallel_trials):
|
| 83 |
center_mean = action_spec["loc"]
|
| 84 |
center_std = action_spec["scale"]
|
|
|
|
| 85 |
for itr in trange(n_iters):
|
| 86 |
if itr == 0:
|
| 87 |
style["num_samples"] = n_samples_init
|
|
|
|
| 102 |
image_circles_np, selected_samples, arm_coord
|
| 103 |
)
|
| 104 |
output_ims.append(image_circles_marked_np)
|
| 105 |
+
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} iteration {itr+1}/{n_iters}. Still working..."
|
| 106 |
|
| 107 |
# if at last iteration, pick one answer out of the selected ones
|
| 108 |
if itr == n_iters - 1:
|
|
|
|
| 119 |
im, selected_samples, arm_coord
|
| 120 |
)
|
| 121 |
output_ims.append(image_circles_marked_np)
|
| 122 |
+
new_samples += selected_samples
|
| 123 |
+
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} last iteration. Still working..."
|
| 124 |
center_mean, center_std = prompter.fit(arrow_ids, samples)
|
| 125 |
|
| 126 |
+
if n_parallel_trials > 1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# adjust sample label to avoid duplications
|
| 128 |
for sample_id in range(len(new_samples)):
|
| 129 |
new_samples[sample_id].label = str(sample_id)
|
|
|
|
| 142 |
output_ims.append(image_circles_marked_np)
|
| 143 |
center_mean, _ = prompter.fit(arrow_ids, new_samples)
|
| 144 |
|
| 145 |
+
if output_ims:
|
| 146 |
+
yield (
|
| 147 |
+
output_ims,
|
| 148 |
+
(
|
| 149 |
+
"Final selected coordinate:"
|
| 150 |
+
f" {np.round(prompter.action_to_coord(center_mean, im, arm_coord).xy, decimals=0)}"
|
| 151 |
+
),
|
| 152 |
+
)
|
| 153 |
return [], "Unable to understand query"
|