pivot-demo / vip_runner.py
pivot-iterative-visual-optimization's picture
Upload 5 files
f9a62da verified
"""VIP."""
import json
import re
import cv2
from tqdm import trange
import numpy as np
import vip
def make_prompt(description, top_n=3):
return f"""
INSTRUCTIONS:
You are tasked to locate an object, region, or point in space in the given annotated image according to a description.
The image is annoated with numbered circles.
Choose the top {top_n} circles that have the most overlap with and/or is closest to what the description is describing in the image.
You are a five-time world champion in this game.
Give a one sentence analysis of why you chose those points.
Provide your answer at the end in a valid JSON of this format:
{{"points": []}}
DESCRIPTION: {description}
IMAGE:
""".strip()
def extract_json(response, key):
json_part = re.search(r"\{.*\}", response, re.DOTALL)
parsed_json = {}
if json_part:
json_data = json_part.group()
# Parse the JSON data
parsed_json = json.loads(json_data)
else:
print("No JSON data found ******\n", response)
return parsed_json[key]
def vip_perform_selection(prompter, vlm, im, desc, arm_coord, samples, top_n):
"""Perform one selection pass given samples."""
image_circles_np = prompter.add_arrow_overlay_plt(
image=im, samples=samples, arm_xy=arm_coord
)
_, encoded_image_circles = cv2.imencode(".png", image_circles_np)
prompt_seq = [make_prompt(desc, top_n=top_n), encoded_image_circles]
response = vlm.query(prompt_seq)
try:
arrow_ids = extract_json(response, "points")
except Exception as e:
print(e)
arrow_ids = []
return arrow_ids, image_circles_np
def vip_runner(
vlm,
im,
desc,
style,
action_spec,
n_samples_init=25,
n_samples_opt=10,
n_iters=3,
n_parallel_trials=1,
):
"""VIP."""
prompter = vip.VisualIterativePrompter(
style, action_spec, vip.SupportedEmbodiments.HF_DEMO
)
output_ims = []
arm_coord = (int(im.shape[1] / 2), int(im.shape[0] / 2))
new_samples = []
center_mean = action_spec["loc"]
for i in range(n_parallel_trials):
center_mean = action_spec["loc"]
center_std = action_spec["scale"]
for itr in trange(n_iters):
if itr == 0:
style["num_samples"] = n_samples_init
else:
style["num_samples"] = n_samples_opt
samples = prompter.sample_actions(im, arm_coord, center_mean, center_std)
arrow_ids, image_circles_np = vip_perform_selection(
prompter, vlm, im, desc, arm_coord, samples, top_n=3
)
# plot sampled circles as red
selected_samples = []
for selected_id in arrow_ids:
sample = samples[selected_id]
sample.coord.color = (255, 0, 0)
selected_samples.append(sample)
image_circles_marked_np = prompter.add_arrow_overlay_plt(
image_circles_np, selected_samples, arm_coord
)
output_ims.append(image_circles_marked_np)
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} iteration {itr+1}/{n_iters}. Still working..."
# if at last iteration, pick one answer out of the selected ones
if itr == n_iters - 1:
arrow_ids, _ = vip_perform_selection(
prompter, vlm, im, desc, arm_coord, selected_samples, top_n=1
)
selected_samples = []
for selected_id in arrow_ids:
sample = samples[selected_id]
sample.coord.color = (255, 0, 0)
selected_samples.append(sample)
image_circles_marked_np = prompter.add_arrow_overlay_plt(
im, selected_samples, arm_coord
)
output_ims.append(image_circles_marked_np)
new_samples += selected_samples
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} last iteration. Still working..."
center_mean, center_std = prompter.fit(arrow_ids, samples)
if n_parallel_trials > 1:
# adjust sample label to avoid duplications
for sample_id in range(len(new_samples)):
new_samples[sample_id].label = str(sample_id)
arrow_ids, _ = vip_perform_selection(
prompter, vlm, im, desc, arm_coord, new_samples, top_n=1
)
selected_samples = []
for selected_id in arrow_ids:
sample = new_samples[selected_id]
sample.coord.color = (255, 0, 0)
selected_samples.append(sample)
image_circles_marked_np = prompter.add_arrow_overlay_plt(
im, selected_samples, arm_coord
)
output_ims.append(image_circles_marked_np)
center_mean, _ = prompter.fit(arrow_ids, new_samples)
if output_ims:
yield (
output_ims,
(
"Final selected coordinate:"
f" {np.round(prompter.action_to_coord(center_mean, im, arm_coord).xy, decimals=0)}"
),
)
return [], "Unable to understand query"