Spaces:
Build error
Build error
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
file_urls = [ | |
'https://lh3.googleusercontent.com/a2iyhpYl4Jgzc0r7MYgXQI1BGwkutp3rKuauNpkEbD3Z_HP-gf29M-wugKebKJQdl8ILtKWN-vOZAS9r1qMsI88=w16383' | |
] | |
def download_file(url, save_name): | |
url = url | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file( | |
file_urls[i], | |
f"video.mp4" | |
) | |
else: | |
download_file( | |
file_urls[i], | |
f"image_{i}.jpg" | |
) | |
path = [['image_0.jpg']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path,0) | |
return image #cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Computer Vision and Deep Learning by Farshid PirahanSiah", | |
examples=path, | |
cache_examples=False, | |
) | |
# def show_preds_video(video_path): | |
# cap = cv2.VideoCapture(video_path) | |
# while(cap.isOpened()): | |
# ret, frame = cap.read() | |
# if ret: | |
# frame_copy = frame.copy() | |
# outputs = model.predict(source=frame) | |
# results = outputs[0].cpu().numpy() | |
# for i, det in enumerate(results.boxes.xyxy): | |
# cv2.rectangle( | |
# frame_copy, | |
# (int(det[0]), int(det[1])), | |
# (int(det[2]), int(det[3])), | |
# color=(0, 0, 255), | |
# thickness=2, | |
# lineType=cv2.LINE_AA | |
# ) | |
# yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
# inputs_video = [ | |
# gr.components.Video(type="filepath", label="Input Video"), | |
# ] | |
# outputs_video = [ | |
# gr.components.Image(type="numpy", label="Output Image"), | |
# ] | |
# interface_video = gr.Interface( | |
# fn=show_preds_video, | |
# inputs=inputs_video, | |
# outputs=outputs_video, | |
# title="Pothole detector", | |
# examples=video_path, | |
# cache_examples=False, | |
# ) | |
# gr.TabbedInterface( | |
# [interface_image, interface_video], | |
# tab_names=['Image inference', 'Video inference'] | |
# ).queue().launch() |