ComputerVision / app.py
pirahansiah's picture
computer vision 1
9fcf801
raw
history blame
2.47 kB
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
'https://lh3.googleusercontent.com/a2iyhpYl4Jgzc0r7MYgXQI1BGwkutp3rKuauNpkEbD3Z_HP-gf29M-wugKebKJQdl8ILtKWN-vOZAS9r1qMsI88=w16383'
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(
file_urls[i],
f"video.mp4"
)
else:
download_file(
file_urls[i],
f"image_{i}.jpg"
)
path = [['image_0.jpg']]
def show_preds_image(image_path):
image = cv2.imread(image_path,0)
return image #cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Computer Vision and Deep Learning by Farshid PirahanSiah",
examples=path,
cache_examples=False,
)
# def show_preds_video(video_path):
# cap = cv2.VideoCapture(video_path)
# while(cap.isOpened()):
# ret, frame = cap.read()
# if ret:
# frame_copy = frame.copy()
# outputs = model.predict(source=frame)
# results = outputs[0].cpu().numpy()
# for i, det in enumerate(results.boxes.xyxy):
# cv2.rectangle(
# frame_copy,
# (int(det[0]), int(det[1])),
# (int(det[2]), int(det[3])),
# color=(0, 0, 255),
# thickness=2,
# lineType=cv2.LINE_AA
# )
# yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
# inputs_video = [
# gr.components.Video(type="filepath", label="Input Video"),
# ]
# outputs_video = [
# gr.components.Image(type="numpy", label="Output Image"),
# ]
# interface_video = gr.Interface(
# fn=show_preds_video,
# inputs=inputs_video,
# outputs=outputs_video,
# title="Pothole detector",
# examples=video_path,
# cache_examples=False,
# )
# gr.TabbedInterface(
# [interface_image, interface_video],
# tab_names=['Image inference', 'Video inference']
# ).queue().launch()