|
import time |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from torchvision import transforms |
|
from .nets import S3FDNet |
|
from .box_utils import nms_ |
|
|
|
PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth' |
|
img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32') |
|
|
|
|
|
class S3FD(): |
|
|
|
def __init__(self, device='cuda'): |
|
|
|
tstamp = time.time() |
|
self.device = device |
|
|
|
print('[S3FD] loading with', self.device) |
|
self.net = S3FDNet(device=self.device).to(self.device) |
|
state_dict = torch.load(PATH_WEIGHT, map_location=self.device) |
|
self.net.load_state_dict(state_dict) |
|
self.net.eval() |
|
print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp)) |
|
|
|
def detect_faces(self, image, conf_th=0.8, scales=[1]): |
|
|
|
w, h = image.shape[1], image.shape[0] |
|
|
|
bboxes = np.empty(shape=(0, 5)) |
|
|
|
with torch.no_grad(): |
|
for s in scales: |
|
scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR) |
|
|
|
scaled_img = np.swapaxes(scaled_img, 1, 2) |
|
scaled_img = np.swapaxes(scaled_img, 1, 0) |
|
scaled_img = scaled_img[[2, 1, 0], :, :] |
|
scaled_img = scaled_img.astype('float32') |
|
scaled_img -= img_mean |
|
scaled_img = scaled_img[[2, 1, 0], :, :] |
|
x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device) |
|
y = self.net(x) |
|
|
|
detections = y.data |
|
scale = torch.Tensor([w, h, w, h]) |
|
|
|
for i in range(detections.size(1)): |
|
j = 0 |
|
while detections[0, i, j, 0] > conf_th: |
|
score = detections[0, i, j, 0] |
|
pt = (detections[0, i, j, 1:] * scale).cpu().numpy() |
|
bbox = (pt[0], pt[1], pt[2], pt[3], score) |
|
bboxes = np.vstack((bboxes, bbox)) |
|
j += 1 |
|
|
|
keep = nms_(bboxes, 0.1) |
|
bboxes = bboxes[keep] |
|
|
|
return bboxes |
|
|