Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,46 @@ import numpy as np
|
|
7 |
import csv
|
8 |
import pandas as pd
|
9 |
|
10 |
-
from
|
|
|
|
|
11 |
import torch
|
12 |
|
13 |
import easyocr
|
14 |
|
15 |
import gradio as gr
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# load table detection model
|
18 |
-
processor = TableTransformerImageProcessor(max_size=800)
|
19 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
20 |
|
21 |
# load table structure recognition model
|
22 |
-
structure_processor = TableTransformerImageProcessor(max_size=1000)
|
23 |
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
|
24 |
|
25 |
# load EasyOCR reader
|
@@ -117,7 +144,8 @@ def visualize_detected_tables(img, det_tables):
|
|
117 |
|
118 |
def detect_and_crop_table(image):
|
119 |
# prepare image for the model
|
120 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values
|
|
|
121 |
|
122 |
# forward pass
|
123 |
with torch.no_grad():
|
@@ -140,7 +168,8 @@ def detect_and_crop_table(image):
|
|
140 |
|
141 |
def recognize_table(image):
|
142 |
# prepare image for the model
|
143 |
-
pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
|
|
|
144 |
|
145 |
# forward pass
|
146 |
with torch.no_grad():
|
|
|
7 |
import csv
|
8 |
import pandas as pd
|
9 |
|
10 |
+
from torchvision import transforms
|
11 |
+
|
12 |
+
from transformers import AutoModelForObjectDetection
|
13 |
import torch
|
14 |
|
15 |
import easyocr
|
16 |
|
17 |
import gradio as gr
|
18 |
|
19 |
+
|
20 |
+
class MaxResize(object):
|
21 |
+
def __init__(self, max_size=800):
|
22 |
+
self.max_size = max_size
|
23 |
+
|
24 |
+
def __call__(self, image):
|
25 |
+
width, height = image.size
|
26 |
+
current_max_size = max(width, height)
|
27 |
+
scale = self.max_size / current_max_size
|
28 |
+
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
|
29 |
+
|
30 |
+
return resized_image
|
31 |
+
|
32 |
+
detection_transform = transforms.Compose([
|
33 |
+
MaxResize(800),
|
34 |
+
transforms.ToTensor(),
|
35 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
36 |
+
])
|
37 |
+
|
38 |
+
structure_transform = transforms.Compose([
|
39 |
+
MaxResize(1000),
|
40 |
+
transforms.ToTensor(),
|
41 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
42 |
+
])
|
43 |
+
|
44 |
# load table detection model
|
45 |
+
# processor = TableTransformerImageProcessor(max_size=800)
|
46 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
|
47 |
|
48 |
# load table structure recognition model
|
49 |
+
# structure_processor = TableTransformerImageProcessor(max_size=1000)
|
50 |
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
|
51 |
|
52 |
# load EasyOCR reader
|
|
|
144 |
|
145 |
def detect_and_crop_table(image):
|
146 |
# prepare image for the model
|
147 |
+
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
148 |
+
pixel_values = detection_transform(image).unsqueeze(0)
|
149 |
|
150 |
# forward pass
|
151 |
with torch.no_grad():
|
|
|
168 |
|
169 |
def recognize_table(image):
|
170 |
# prepare image for the model
|
171 |
+
# pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
|
172 |
+
pixel_values = structure_transform(image).unsqueeze(0)
|
173 |
|
174 |
# forward pass
|
175 |
with torch.no_grad():
|