pierreguillou
commited on
Commit
·
69136d7
1
Parent(s):
4e49717
Update files/functions.py
Browse files- files/functions.py +46 -62
files/functions.py
CHANGED
@@ -57,7 +57,7 @@ sep_box = cls_box
|
|
57 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
|
60 |
-
model_id = "pierreguillou/lilt-xlm-roberta-base-finetuned-DocLayNet-
|
61 |
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
63 |
model = AutoModelForTokenClassification.from_pretrained(model_id);
|
@@ -117,7 +117,7 @@ langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
|
117 |
# get text and bounding boxes from an image
|
118 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
119 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
120 |
-
def
|
121 |
|
122 |
data = {}
|
123 |
for i in range(len(results['line_num'])):
|
@@ -160,55 +160,43 @@ def get_data_paragraph(results, factor, conf_min=0):
|
|
160 |
par_idx += 1
|
161 |
|
162 |
# get lines of texts, grouped by paragraph
|
163 |
-
|
164 |
row_indexes = list()
|
165 |
-
texts_lines = list()
|
166 |
-
texts_lines_par = list()
|
167 |
row_index = 0
|
168 |
for _,par in par_data.items():
|
169 |
count_lines = 0
|
170 |
-
lines_par = list()
|
171 |
for _,line in par.items():
|
172 |
if count_lines == 0: row_indexes.append(row_index)
|
173 |
line_text = ' '.join([item[0] for item in line])
|
174 |
-
|
175 |
-
lines_par.append(line_text)
|
176 |
count_lines += 1
|
177 |
row_index += 1
|
178 |
# lines.append("\n")
|
179 |
row_index += 1
|
180 |
-
texts_lines_par.append(lines_par)
|
181 |
-
texts_pars.append(' '.join(lines_par))
|
182 |
# lines = lines[:-1]
|
183 |
|
184 |
# get paragraphes boxes (par_boxes)
|
185 |
# get lines boxes (line_boxes)
|
186 |
par_boxes = list()
|
187 |
par_idx = 1
|
188 |
-
line_boxes
|
189 |
line_idx = 1
|
190 |
for _, par in par_data.items():
|
191 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
192 |
-
line_boxes_par = list()
|
193 |
-
count_line_par = 0
|
194 |
for _, line in par.items():
|
195 |
xmin, ymin = line[0][1], line[0][2]
|
196 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
197 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
198 |
-
line_boxes_par.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
199 |
xmins.append(xmin)
|
200 |
ymins.append(ymin)
|
201 |
xmaxs.append(xmax)
|
202 |
ymaxs.append(ymax)
|
203 |
line_idx += 1
|
204 |
-
count_line_par += 1
|
205 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
206 |
-
|
207 |
-
par_boxes.append(par_bbox)
|
208 |
-
lines_par_boxes.append(line_boxes_par)
|
209 |
par_idx += 1
|
210 |
|
211 |
-
return
|
212 |
|
213 |
# rescale image to get 300dpi
|
214 |
def set_image_dpi_resize(image):
|
@@ -337,7 +325,7 @@ def sort_data_wo_labels(bboxes, texts):
|
|
337 |
|
338 |
return sorted_bboxes, sorted_texts
|
339 |
|
340 |
-
## PDF
|
341 |
|
342 |
# get filename and images of PDF pages
|
343 |
def pdf_to_images(uploaded_pdf):
|
@@ -358,7 +346,7 @@ def pdf_to_images(uploaded_pdf):
|
|
358 |
except PdfReadError:
|
359 |
path_to_file = pdf_blank
|
360 |
filename = path_to_file.replace(examples_dir,"")
|
361 |
-
msg = "
|
362 |
images = [Image.open(image_blank)]
|
363 |
else:
|
364 |
try:
|
@@ -380,8 +368,8 @@ def extraction_data_from_image(images):
|
|
380 |
|
381 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
382 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
383 |
-
results,
|
384 |
-
images_ids_list,
|
385 |
|
386 |
try:
|
387 |
for i,image in enumerate(images):
|
@@ -393,7 +381,7 @@ def extraction_data_from_image(images):
|
|
393 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
394 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
395 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
396 |
-
|
397 |
# OCR PyTesseract | get langs of page
|
398 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
399 |
txt = txt.strip().lower()
|
@@ -413,40 +401,36 @@ def extraction_data_from_image(images):
|
|
413 |
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
|
414 |
# results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
texts_pars_list.append(texts_pars[i])
|
419 |
-
texts_lines_par_list.append(texts_lines_par[i])
|
420 |
par_boxes_list.append(par_boxes[i])
|
421 |
line_boxes_list.append(line_boxes[i])
|
422 |
-
lines_par_boxes_list.append(lines_par_boxes[i])
|
423 |
images_ids_list.append(i)
|
424 |
images_list.append(images[i])
|
425 |
page_no_list.append(i)
|
426 |
-
num_pages_list.append(num_imgs)
|
427 |
|
428 |
except:
|
429 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
430 |
else:
|
431 |
from datasets import Dataset
|
432 |
-
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "
|
433 |
|
434 |
# print(f"The text data was successfully extracted by the OCR!")
|
435 |
|
436 |
-
return dataset,
|
437 |
|
438 |
## Inference
|
439 |
|
440 |
-
def
|
441 |
|
442 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
|
443 |
|
444 |
-
# get batch
|
445 |
-
# batch_page_hash = example["page_hash"]
|
446 |
batch_images_ids = example["images_ids"]
|
447 |
batch_images = example["images"]
|
448 |
-
|
449 |
-
|
450 |
batch_images_size = [image.size for image in batch_images]
|
451 |
|
452 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
@@ -455,37 +439,38 @@ def prepare_inference_features_paragraph(example, cls_box = cls_box, sep_box = s
|
|
455 |
if not isinstance(batch_images_ids, list):
|
456 |
batch_images_ids = [batch_images_ids]
|
457 |
batch_images = [batch_images]
|
458 |
-
|
459 |
-
|
460 |
batch_width, batch_height = [batch_width], [batch_height]
|
461 |
|
462 |
# process all images of the batch
|
463 |
-
for num_batch, (image_id, boxes,
|
464 |
tokens_list = []
|
465 |
bboxes_list = []
|
466 |
|
467 |
# add a dimension if only on image
|
468 |
-
if not isinstance(
|
469 |
-
|
470 |
|
471 |
# convert boxes to original
|
472 |
-
|
473 |
|
474 |
# sort boxes with texts
|
475 |
# we want sorted lists from top to bottom of the image
|
476 |
-
boxes,
|
477 |
|
478 |
count = 0
|
479 |
-
for box,
|
480 |
-
|
481 |
-
|
482 |
-
tokens_list.extend(
|
483 |
-
|
|
|
484 |
|
485 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
486 |
# to get parts of image with overlap
|
487 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
488 |
-
encodings = tokenizer(" ".join(
|
489 |
truncation=True,
|
490 |
padding="max_length",
|
491 |
max_length=max_length,
|
@@ -530,7 +515,7 @@ def prepare_inference_features_paragraph(example, cls_box = cls_box, sep_box = s
|
|
530 |
"normalized_bboxes": bb_list,
|
531 |
}
|
532 |
|
533 |
-
|
534 |
|
535 |
class CustomDataset(Dataset):
|
536 |
def __init__(self, dataset, tokenizer):
|
@@ -552,7 +537,7 @@ class CustomDataset(Dataset):
|
|
552 |
|
553 |
return encoding
|
554 |
|
555 |
-
|
556 |
|
557 |
# get predictions at token level
|
558 |
def predictions_token_level(images, custom_encoded_dataset):
|
@@ -561,7 +546,6 @@ def predictions_token_level(images, custom_encoded_dataset):
|
|
561 |
if num_imgs > 0:
|
562 |
|
563 |
chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
|
564 |
-
normalize_batch_bboxes_lines_pars = dict()
|
565 |
images_ids_list = list()
|
566 |
|
567 |
for i,encoding in enumerate(custom_encoded_dataset):
|
@@ -605,7 +589,7 @@ def predictions_token_level(images, custom_encoded_dataset):
|
|
605 |
from functools import reduce
|
606 |
|
607 |
# Get predictions (line level)
|
608 |
-
def
|
609 |
|
610 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
611 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
@@ -671,7 +655,7 @@ def predictions_paragraph_level_gradio(dataset, outputs, images_ids_list, chunk_
|
|
671 |
input_ids_dict[str(bbox)].append(input_id)
|
672 |
probs_dict[str(bbox)].append(probs)
|
673 |
bbox_prev = bbox
|
674 |
-
|
675 |
probs_bbox = dict()
|
676 |
for i,bbox in enumerate(bboxes_list):
|
677 |
probs = probs_dict[str(bbox)]
|
@@ -700,7 +684,7 @@ def predictions_paragraph_level_gradio(dataset, outputs, images_ids_list, chunk_
|
|
700 |
print("An error occurred while getting predictions!")
|
701 |
|
702 |
# Get labeled images with lines bounding boxes
|
703 |
-
def
|
704 |
|
705 |
labeled_images = list()
|
706 |
|
@@ -784,7 +768,7 @@ def get_encoded_chunk_inference(index_chunk=None):
|
|
784 |
return image, df, num_tokens, page_no, num_pages
|
785 |
|
786 |
# display chunk of PDF image and its data
|
787 |
-
def
|
788 |
|
789 |
# get image and image data
|
790 |
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
@@ -797,14 +781,14 @@ def display_chunk_paragraphs_inference(index_chunk=None):
|
|
797 |
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
798 |
|
799 |
# display image with bounding boxes
|
800 |
-
print(">> PDF image with bounding boxes of
|
801 |
draw = ImageDraw.Draw(image)
|
802 |
|
803 |
labels = list()
|
804 |
for box, text in zip(bboxes, texts):
|
805 |
color = "red"
|
806 |
draw.rectangle(box, outline=color)
|
807 |
-
|
808 |
# resize image to original
|
809 |
width, height = image.size
|
810 |
image = image.resize((int(0.5*width), int(0.5*height)))
|
@@ -815,7 +799,7 @@ def display_chunk_paragraphs_inference(index_chunk=None):
|
|
815 |
cv2.waitKey(0)
|
816 |
|
817 |
# display image dataframe
|
818 |
-
print("\n>> Dataframe of annotated
|
819 |
-
cols = ["texts",
|
820 |
df = df[cols]
|
821 |
-
display(df)
|
|
|
57 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
|
60 |
+
model_id = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384"
|
61 |
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
63 |
model = AutoModelForTokenClassification.from_pretrained(model_id);
|
|
|
117 |
# get text and bounding boxes from an image
|
118 |
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
119 |
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
120 |
+
def get_data(results, factor, conf_min=0):
|
121 |
|
122 |
data = {}
|
123 |
for i in range(len(results['line_num'])):
|
|
|
160 |
par_idx += 1
|
161 |
|
162 |
# get lines of texts, grouped by paragraph
|
163 |
+
lines = list()
|
164 |
row_indexes = list()
|
|
|
|
|
165 |
row_index = 0
|
166 |
for _,par in par_data.items():
|
167 |
count_lines = 0
|
|
|
168 |
for _,line in par.items():
|
169 |
if count_lines == 0: row_indexes.append(row_index)
|
170 |
line_text = ' '.join([item[0] for item in line])
|
171 |
+
lines.append(line_text)
|
|
|
172 |
count_lines += 1
|
173 |
row_index += 1
|
174 |
# lines.append("\n")
|
175 |
row_index += 1
|
|
|
|
|
176 |
# lines = lines[:-1]
|
177 |
|
178 |
# get paragraphes boxes (par_boxes)
|
179 |
# get lines boxes (line_boxes)
|
180 |
par_boxes = list()
|
181 |
par_idx = 1
|
182 |
+
line_boxes = list()
|
183 |
line_idx = 1
|
184 |
for _, par in par_data.items():
|
185 |
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
|
|
|
|
186 |
for _, line in par.items():
|
187 |
xmin, ymin = line[0][1], line[0][2]
|
188 |
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
189 |
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
|
|
190 |
xmins.append(xmin)
|
191 |
ymins.append(ymin)
|
192 |
xmaxs.append(xmax)
|
193 |
ymaxs.append(ymax)
|
194 |
line_idx += 1
|
|
|
195 |
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
196 |
+
par_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
|
|
|
|
197 |
par_idx += 1
|
198 |
|
199 |
+
return lines, row_indexes, par_boxes, line_boxes #data, par_data #
|
200 |
|
201 |
# rescale image to get 300dpi
|
202 |
def set_image_dpi_resize(image):
|
|
|
325 |
|
326 |
return sorted_bboxes, sorted_texts
|
327 |
|
328 |
+
## PDF processing
|
329 |
|
330 |
# get filename and images of PDF pages
|
331 |
def pdf_to_images(uploaded_pdf):
|
|
|
346 |
except PdfReadError:
|
347 |
path_to_file = pdf_blank
|
348 |
filename = path_to_file.replace(examples_dir,"")
|
349 |
+
msg = "Invalid PDF file."
|
350 |
images = [Image.open(image_blank)]
|
351 |
else:
|
352 |
try:
|
|
|
368 |
|
369 |
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
370 |
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
371 |
+
results, lines, row_indexes, par_boxes, line_boxes = dict(), dict(), dict(), dict(), dict()
|
372 |
+
images_ids_list, lines_list, par_boxes_list, line_boxes_list, images_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list()
|
373 |
|
374 |
try:
|
375 |
for i,image in enumerate(images):
|
|
|
381 |
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
382 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
383 |
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
384 |
+
|
385 |
# OCR PyTesseract | get langs of page
|
386 |
txt = pytesseract.image_to_string(img, config=custom_config)
|
387 |
txt = txt.strip().lower()
|
|
|
401 |
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
|
402 |
# results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
403 |
|
404 |
+
lines[i], row_indexes[i], par_boxes[i], line_boxes[i] = get_data(results[i], factor, conf_min=0)
|
405 |
+
lines_list.append(lines[i])
|
|
|
|
|
406 |
par_boxes_list.append(par_boxes[i])
|
407 |
line_boxes_list.append(line_boxes[i])
|
|
|
408 |
images_ids_list.append(i)
|
409 |
images_list.append(images[i])
|
410 |
page_no_list.append(i)
|
411 |
+
num_pages_list.append(num_imgs)
|
412 |
|
413 |
except:
|
414 |
print(f"There was an error within the extraction of PDF text by the OCR!")
|
415 |
else:
|
416 |
from datasets import Dataset
|
417 |
+
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts": lines_list, "bboxes_line": line_boxes_list})
|
418 |
|
419 |
# print(f"The text data was successfully extracted by the OCR!")
|
420 |
|
421 |
+
return dataset, lines, row_indexes, par_boxes, line_boxes
|
422 |
|
423 |
## Inference
|
424 |
|
425 |
+
def prepare_inference_features(example, cls_box = cls_box, sep_box = sep_box):
|
426 |
|
427 |
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
|
428 |
|
429 |
+
# get batch
|
|
|
430 |
batch_images_ids = example["images_ids"]
|
431 |
batch_images = example["images"]
|
432 |
+
batch_bboxes_line = example["bboxes_line"]
|
433 |
+
batch_texts = example["texts"]
|
434 |
batch_images_size = [image.size for image in batch_images]
|
435 |
|
436 |
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
|
|
439 |
if not isinstance(batch_images_ids, list):
|
440 |
batch_images_ids = [batch_images_ids]
|
441 |
batch_images = [batch_images]
|
442 |
+
batch_bboxes_line = [batch_bboxes_line]
|
443 |
+
batch_texts = [batch_texts]
|
444 |
batch_width, batch_height = [batch_width], [batch_height]
|
445 |
|
446 |
# process all images of the batch
|
447 |
+
for num_batch, (image_id, boxes, texts, width, height) in enumerate(zip(batch_images_ids, batch_bboxes_line, batch_texts, batch_width, batch_height)):
|
448 |
tokens_list = []
|
449 |
bboxes_list = []
|
450 |
|
451 |
# add a dimension if only on image
|
452 |
+
if not isinstance(texts, list):
|
453 |
+
texts, boxes = [texts], [boxes]
|
454 |
|
455 |
# convert boxes to original
|
456 |
+
normalize_bboxes_line = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
|
457 |
|
458 |
# sort boxes with texts
|
459 |
# we want sorted lists from top to bottom of the image
|
460 |
+
boxes, texts = sort_data_wo_labels(normalize_bboxes_line, texts)
|
461 |
|
462 |
count = 0
|
463 |
+
for box, text in zip(boxes, texts):
|
464 |
+
tokens = tokenizer.tokenize(text)
|
465 |
+
num_tokens = len(tokens) # get number of tokens
|
466 |
+
tokens_list.extend(tokens)
|
467 |
+
|
468 |
+
bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
|
469 |
|
470 |
# use of return_overflowing_tokens=True / stride=doc_stride
|
471 |
# to get parts of image with overlap
|
472 |
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
473 |
+
encodings = tokenizer(" ".join(texts),
|
474 |
truncation=True,
|
475 |
padding="max_length",
|
476 |
max_length=max_length,
|
|
|
515 |
"normalized_bboxes": bb_list,
|
516 |
}
|
517 |
|
518 |
+
from torch.utils.data import Dataset
|
519 |
|
520 |
class CustomDataset(Dataset):
|
521 |
def __init__(self, dataset, tokenizer):
|
|
|
537 |
|
538 |
return encoding
|
539 |
|
540 |
+
import torch.nn.functional as F
|
541 |
|
542 |
# get predictions at token level
|
543 |
def predictions_token_level(images, custom_encoded_dataset):
|
|
|
546 |
if num_imgs > 0:
|
547 |
|
548 |
chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
|
|
|
549 |
images_ids_list = list()
|
550 |
|
551 |
for i,encoding in enumerate(custom_encoded_dataset):
|
|
|
589 |
from functools import reduce
|
590 |
|
591 |
# Get predictions (line level)
|
592 |
+
def predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
|
593 |
|
594 |
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
595 |
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
|
|
655 |
input_ids_dict[str(bbox)].append(input_id)
|
656 |
probs_dict[str(bbox)].append(probs)
|
657 |
bbox_prev = bbox
|
658 |
+
|
659 |
probs_bbox = dict()
|
660 |
for i,bbox in enumerate(bboxes_list):
|
661 |
probs = probs_dict[str(bbox)]
|
|
|
684 |
print("An error occurred while getting predictions!")
|
685 |
|
686 |
# Get labeled images with lines bounding boxes
|
687 |
+
def get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
|
688 |
|
689 |
labeled_images = list()
|
690 |
|
|
|
768 |
return image, df, num_tokens, page_no, num_pages
|
769 |
|
770 |
# display chunk of PDF image and its data
|
771 |
+
def display_chunk_lines_inference(index_chunk=None):
|
772 |
|
773 |
# get image and image data
|
774 |
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
|
|
781 |
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
782 |
|
783 |
# display image with bounding boxes
|
784 |
+
print(">> PDF image with bounding boxes of lines\n")
|
785 |
draw = ImageDraw.Draw(image)
|
786 |
|
787 |
labels = list()
|
788 |
for box, text in zip(bboxes, texts):
|
789 |
color = "red"
|
790 |
draw.rectangle(box, outline=color)
|
791 |
+
|
792 |
# resize image to original
|
793 |
width, height = image.size
|
794 |
image = image.resize((int(0.5*width), int(0.5*height)))
|
|
|
799 |
cv2.waitKey(0)
|
800 |
|
801 |
# display image dataframe
|
802 |
+
print("\n>> Dataframe of annotated lines\n")
|
803 |
+
cols = ["texts", "bboxes"]
|
804 |
df = df[cols]
|
805 |
+
display(df)
|