|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
|
|
from argparse import Namespace |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
from omegaconf import MISSING, II, OmegaConf |
|
|
|
from fairseq.data import BinarizedAudioDataset, FileAudioDataset |
|
from fairseq.dataclass import FairseqDataclass, ChoiceEnum |
|
from fairseq.data.text_compressor import TextCompressionLevel |
|
|
|
from . import FairseqTask, register_task |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class InferredW2vConfig: |
|
|
|
|
|
mask_length: Optional[int] = II("model.mask_length") |
|
mask_prob: Optional[float] = II("model.mask_prob") |
|
mask_selection: Optional[str] = II("model.mask_selection") |
|
mask_other: Optional[float] = II("model.mask_other") |
|
no_mask_overlap: Optional[bool] = II("model.no_mask_overlap") |
|
mask_min_space: Optional[int] = II("model.mask_min_space") |
|
mask_channel_length: Optional[int] = II("model.mask_channel_length") |
|
mask_channel_prob: Optional[float] = II("model.mask_channel_prob") |
|
mask_channel_selection: Optional[str] = II("model.mask_channel_selection") |
|
mask_channel_other: Optional[float] = II("model.mask_channel_other") |
|
no_mask_channel_overlap: Optional[bool] = II("model.no_mask_channel_overlap") |
|
mask_channel_min_space: Optional[int] = II("model.mask_channel_min_space") |
|
|
|
conv_feature_layers: Optional[str] = II("model.conv_feature_layers") |
|
encoder_embed_dim: Optional[int] = II("model.encoder_embed_dim") |
|
|
|
|
|
@dataclass |
|
class AudioPretrainingConfig(FairseqDataclass): |
|
data: str = field(default=MISSING, metadata={"help": "path to data directory"}) |
|
labels: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "extension of the label file to load, used for fine-tuning"}, |
|
) |
|
binarized_dataset: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "if true, loads binarized dataset (useful for very large datasets). " |
|
"See examples/wav2vec/scripts/binarize_manifest.sh" |
|
}, |
|
) |
|
sample_rate: int = field( |
|
default=16_000, |
|
metadata={ |
|
"help": "target sample rate. audio files will be up/down sampled to this rate" |
|
}, |
|
) |
|
normalize: bool = field( |
|
default=False, |
|
metadata={"help": "if set, normalizes input to have 0 mean and unit variance"}, |
|
) |
|
enable_padding: bool = field( |
|
default=False, metadata={"help": "pad shorter samples instead of cropping"} |
|
) |
|
max_sample_size: Optional[int] = field( |
|
default=None, metadata={"help": "max sample size to crop to for batching"} |
|
) |
|
min_sample_size: Optional[int] = field( |
|
default=None, metadata={"help": "min sample size to skip small examples"} |
|
) |
|
num_batch_buckets: int = field( |
|
default=0, |
|
metadata={"help": "number of buckets"}, |
|
) |
|
precompute_mask_indices: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "flag to compute mask indices in data preparation.", |
|
}, |
|
) |
|
|
|
inferred_w2v_config: Optional[InferredW2vConfig] = field( |
|
default=None, |
|
metadata={ |
|
"help": "wav2vec 2.0 masking arguments used to pre-compute masks (required for TPU)", |
|
}, |
|
) |
|
|
|
tpu: bool = II("common.tpu") |
|
text_compression_level: ChoiceEnum([x.name for x in TextCompressionLevel]) = field( |
|
default="none", |
|
metadata={ |
|
"help": "compression level for texts (e.g. audio filenames, " |
|
"target texts): none/low/high (default: none). " |
|
}, |
|
) |
|
|
|
|
|
@register_task("audio_pretraining", dataclass=AudioPretrainingConfig) |
|
class AudioPretrainingTask(FairseqTask): |
|
""" """ |
|
|
|
cfg: AudioPretrainingConfig |
|
|
|
@classmethod |
|
def setup_task(cls, cfg: AudioPretrainingConfig, **kwargs): |
|
"""Setup the task (e.g., load dictionaries). |
|
|
|
Args: |
|
cfg (AudioPretrainingConfig): configuration of this task |
|
""" |
|
|
|
return cls(cfg) |
|
|
|
def _get_mask_precompute_kwargs(self, cfg): |
|
if self.cfg.precompute_mask_indices or self.cfg.tpu: |
|
assert ( |
|
cfg.inferred_w2v_config is not None |
|
), "inferred_w2v_config must be set" |
|
return OmegaConf.to_container( |
|
cfg.inferred_w2v_config, resolve=True, enum_to_str=True |
|
) |
|
else: |
|
return {} |
|
|
|
def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs): |
|
data_path = self.cfg.data |
|
task_cfg = task_cfg or self.cfg |
|
|
|
|
|
if isinstance(task_cfg, Namespace): |
|
if not hasattr(task_cfg, "autoregressive"): |
|
task_cfg.autoregressive = not task_cfg.criterion == "ctc" |
|
|
|
text_compression_level = getattr( |
|
TextCompressionLevel, str(self.cfg.text_compression_level) |
|
) |
|
if getattr(task_cfg, "binarized_dataset", False): |
|
self.datasets[split] = BinarizedAudioDataset( |
|
data_path, |
|
split=split, |
|
sample_rate=task_cfg.get("sample_rate", self.cfg.sample_rate), |
|
max_sample_size=self.cfg.max_sample_size, |
|
min_sample_size=self.cfg.min_sample_size, |
|
pad=task_cfg.labels is not None or task_cfg.enable_padding, |
|
normalize=task_cfg.normalize, |
|
num_buckets=self.cfg.num_batch_buckets or int(self.cfg.tpu), |
|
compute_mask_indices=(self.cfg.precompute_mask_indices or self.cfg.tpu), |
|
**self._get_mask_precompute_kwargs(task_cfg), |
|
) |
|
else: |
|
manifest_path = os.path.join(data_path, "{}.tsv".format(split)) |
|
|
|
self.datasets[split] = FileAudioDataset( |
|
manifest_path=manifest_path, |
|
sample_rate=task_cfg.get("sample_rate", self.cfg.sample_rate), |
|
max_sample_size=self.cfg.max_sample_size, |
|
min_sample_size=self.cfg.min_sample_size, |
|
pad=task_cfg.labels is not None or task_cfg.enable_padding, |
|
normalize=task_cfg.normalize, |
|
num_buckets=self.cfg.num_batch_buckets or int(self.cfg.tpu), |
|
compute_mask_indices=(self.cfg.precompute_mask_indices or self.cfg.tpu), |
|
text_compression_level=text_compression_level, |
|
**self._get_mask_precompute_kwargs(task_cfg), |
|
) |
|
|
|
if self.cfg.tpu and task_cfg.inferred_w2v_config.mask_channel_prob == 0.0: |
|
logger.info( |
|
"Pretraining on TPUs may suffer convergence " |
|
"issues when training with `mask_channel_prob` value of " |
|
"0. You may want to set this to a low value close to 0." |
|
) |
|
|
|
@property |
|
def source_dictionary(self): |
|
return None |
|
|
|
@property |
|
def target_dictionary(self): |
|
return None |
|
|
|
def max_positions(self): |
|
"""Maximum input length supported by the encoder.""" |
|
return sys.maxsize, sys.maxsize |
|
|
|
def build_model(self, model_cfg: FairseqDataclass, from_checkpoint=False): |
|
model = super().build_model(model_cfg, from_checkpoint) |
|
|
|
actualized_cfg = getattr(model, "cfg", None) |
|
if actualized_cfg is not None: |
|
|
|
if hasattr(actualized_cfg, "w2v_args"): |
|
model_cfg.w2v_args = actualized_cfg.w2v_args |
|
|
|
return model |
|
|