|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import logging |
|
import os |
|
from typing import Any, Dict, Iterator, List |
|
|
|
import torch |
|
from omegaconf import open_dict |
|
from torch import nn |
|
|
|
from fairseq import utils |
|
from fairseq.data import encoders |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def from_pretrained( |
|
model_name_or_path, |
|
checkpoint_file="model.pt", |
|
data_name_or_path=".", |
|
archive_map=None, |
|
**kwargs |
|
): |
|
from fairseq import checkpoint_utils, file_utils |
|
|
|
if archive_map is not None: |
|
if model_name_or_path in archive_map: |
|
model_name_or_path = archive_map[model_name_or_path] |
|
if data_name_or_path is not None and data_name_or_path in archive_map: |
|
data_name_or_path = archive_map[data_name_or_path] |
|
|
|
|
|
|
|
if isinstance(model_name_or_path, dict): |
|
for k, v in model_name_or_path.items(): |
|
if k == "checkpoint_file": |
|
checkpoint_file = v |
|
elif ( |
|
k != "path" |
|
|
|
and k not in kwargs |
|
): |
|
kwargs[k] = v |
|
model_name_or_path = model_name_or_path["path"] |
|
|
|
model_path = file_utils.load_archive_file(model_name_or_path) |
|
|
|
|
|
if data_name_or_path.startswith("."): |
|
kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path)) |
|
else: |
|
kwargs["data"] = file_utils.load_archive_file(data_name_or_path) |
|
for file, arg in { |
|
"code": "bpe_codes", |
|
"bpecodes": "bpe_codes", |
|
"sentencepiece.bpe.model": "sentencepiece_model", |
|
"merges.txt": "bpe_merges", |
|
"vocab.json": "bpe_vocab", |
|
}.items(): |
|
path = os.path.join(model_path, file) |
|
if os.path.exists(path): |
|
kwargs[arg] = path |
|
|
|
if "user_dir" in kwargs: |
|
utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"])) |
|
|
|
model_path = [ |
|
os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep) |
|
] |
|
|
|
if "is_vocoder" in kwargs: |
|
args = {"data": kwargs["data"], "model_path": model_path} |
|
task = None |
|
models = None |
|
else: |
|
models, args, task = checkpoint_utils.load_model_ensemble_and_task( |
|
model_path, |
|
arg_overrides=kwargs, |
|
) |
|
if "generation_args" in kwargs and kwargs["generation_args"]: |
|
for key in kwargs["generation_args"]: |
|
setattr(args["generation"], key, kwargs["generation_args"][key]) |
|
|
|
return { |
|
"args": args, |
|
"task": task, |
|
"models": models, |
|
} |
|
|
|
|
|
class GeneratorHubInterface(nn.Module): |
|
""" |
|
PyTorch Hub interface for generating sequences from a pre-trained |
|
translation or language model. |
|
""" |
|
|
|
def __init__(self, cfg, task, models): |
|
super().__init__() |
|
self.cfg = cfg |
|
self.task = task |
|
self.models = nn.ModuleList(models) |
|
self.src_dict = task.source_dictionary |
|
self.tgt_dict = task.target_dictionary |
|
|
|
|
|
for model in self.models: |
|
model.prepare_for_inference_(cfg) |
|
|
|
|
|
|
|
self.align_dict = utils.load_align_dict(cfg.generation.replace_unk) |
|
|
|
self.tokenizer = encoders.build_tokenizer(cfg.tokenizer) |
|
self.bpe = encoders.build_bpe(cfg.bpe) |
|
|
|
self.max_positions = utils.resolve_max_positions( |
|
self.task.max_positions(), *[model.max_positions() for model in models] |
|
) |
|
|
|
|
|
self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float)) |
|
|
|
@property |
|
def device(self): |
|
return self._float_tensor.device |
|
|
|
def translate( |
|
self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs |
|
) -> List[str]: |
|
return self.sample(sentences, beam, verbose, **kwargs) |
|
|
|
def sample( |
|
self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs |
|
) -> List[str]: |
|
if isinstance(sentences, str): |
|
return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0] |
|
tokenized_sentences = [self.encode(sentence) for sentence in sentences] |
|
batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs) |
|
return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos] |
|
|
|
def score( |
|
self, sentences: List[str], replace_newline_with_eos: bool = False, **kwargs |
|
): |
|
if isinstance(sentences, str): |
|
return self.score( |
|
[sentences], replace_newline_with_eos=replace_newline_with_eos, **kwargs |
|
)[0] |
|
|
|
def encode(sentence): |
|
if replace_newline_with_eos: |
|
return torch.cat([self.encode(line) for line in sentence.splitlines()]) |
|
else: |
|
return self.encode(sentence) |
|
|
|
|
|
tokenized_sentences = [encode(sentence) for sentence in sentences] |
|
return [ |
|
hypos[0] |
|
for hypos in self.generate( |
|
tokenized_sentences, score_reference=True, **kwargs |
|
) |
|
] |
|
|
|
def generate( |
|
self, |
|
tokenized_sentences: List[torch.LongTensor], |
|
beam: int = 5, |
|
verbose: bool = False, |
|
skip_invalid_size_inputs=False, |
|
inference_step_args=None, |
|
prefix_allowed_tokens_fn=None, |
|
**kwargs |
|
) -> List[List[Dict[str, torch.Tensor]]]: |
|
if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1: |
|
return self.generate( |
|
tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, **kwargs |
|
)[0] |
|
|
|
|
|
gen_args = copy.deepcopy(self.cfg.generation) |
|
with open_dict(gen_args): |
|
gen_args.beam = beam |
|
for k, v in kwargs.items(): |
|
setattr(gen_args, k, v) |
|
generator = self.task.build_generator( |
|
self.models, |
|
gen_args, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
) |
|
|
|
inference_step_args = inference_step_args or {} |
|
results = [] |
|
for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs): |
|
batch = utils.apply_to_sample(lambda t: t.to(self.device), batch) |
|
translations = self.task.inference_step( |
|
generator, self.models, batch, **inference_step_args |
|
) |
|
for id, hypos in zip(batch["id"].tolist(), translations): |
|
results.append((id, hypos)) |
|
|
|
|
|
outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])] |
|
|
|
if verbose: |
|
|
|
def getarg(name, default): |
|
return getattr(gen_args, name, getattr(self.cfg, name, default)) |
|
|
|
for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs): |
|
src_str_with_unk = self.string(source_tokens) |
|
logger.info("S\t{}".format(src_str_with_unk)) |
|
for hypo in target_hypotheses: |
|
hypo_str = self.decode(hypo["tokens"]) |
|
logger.info("H\t{}\t{}".format(hypo["score"], hypo_str)) |
|
logger.info( |
|
"P\t{}".format( |
|
" ".join( |
|
map( |
|
lambda x: "{:.4f}".format(x), |
|
hypo["positional_scores"].tolist(), |
|
) |
|
) |
|
) |
|
) |
|
if hypo["alignment"] is not None and getarg( |
|
"print_alignment", False |
|
): |
|
logger.info( |
|
"A\t{}".format( |
|
" ".join( |
|
[ |
|
"{}-{}".format(src_idx, tgt_idx) |
|
for src_idx, tgt_idx in hypo["alignment"] |
|
] |
|
) |
|
) |
|
) |
|
return outputs |
|
|
|
def encode(self, sentence: str) -> torch.LongTensor: |
|
sentence = self.tokenize(sentence) |
|
sentence = self.apply_bpe(sentence) |
|
return self.binarize(sentence) |
|
|
|
def decode(self, tokens: torch.LongTensor) -> str: |
|
sentence = self.string(tokens) |
|
sentence = self.remove_bpe(sentence) |
|
return self.detokenize(sentence) |
|
|
|
def tokenize(self, sentence: str) -> str: |
|
if self.tokenizer is not None: |
|
sentence = self.tokenizer.encode(sentence) |
|
return sentence |
|
|
|
def detokenize(self, sentence: str) -> str: |
|
if self.tokenizer is not None: |
|
sentence = self.tokenizer.decode(sentence) |
|
return sentence |
|
|
|
def apply_bpe(self, sentence: str) -> str: |
|
if self.bpe is not None: |
|
sentence = self.bpe.encode(sentence) |
|
return sentence |
|
|
|
def remove_bpe(self, sentence: str) -> str: |
|
if self.bpe is not None: |
|
sentence = self.bpe.decode(sentence) |
|
return sentence |
|
|
|
def binarize(self, sentence: str) -> torch.LongTensor: |
|
return self.src_dict.encode_line(sentence, add_if_not_exist=False).long() |
|
|
|
def string(self, tokens: torch.LongTensor) -> str: |
|
return self.tgt_dict.string(tokens) |
|
|
|
def _build_batches( |
|
self, tokens: List[List[int]], skip_invalid_size_inputs: bool |
|
) -> Iterator[Dict[str, Any]]: |
|
lengths = torch.LongTensor([t.numel() for t in tokens]) |
|
batch_iterator = self.task.get_batch_iterator( |
|
dataset=self.task.build_dataset_for_inference(tokens, lengths), |
|
max_tokens=self.cfg.dataset.max_tokens, |
|
max_sentences=self.cfg.dataset.batch_size, |
|
max_positions=self.max_positions, |
|
ignore_invalid_inputs=skip_invalid_size_inputs, |
|
disable_iterator_cache=True, |
|
).next_epoch_itr(shuffle=False) |
|
return batch_iterator |
|
|
|
|
|
class BPEHubInterface(object): |
|
"""PyTorch Hub interface for Byte-Pair Encoding (BPE).""" |
|
|
|
def __init__(self, bpe, **kwargs): |
|
super().__init__() |
|
args = argparse.Namespace(bpe=bpe, **kwargs) |
|
self.bpe = encoders.build_bpe(args) |
|
assert self.bpe is not None |
|
|
|
def encode(self, sentence: str) -> str: |
|
return self.bpe.encode(sentence) |
|
|
|
def decode(self, sentence: str) -> str: |
|
return self.bpe.decode(sentence) |
|
|
|
|
|
class TokenizerHubInterface(object): |
|
"""PyTorch Hub interface for tokenization.""" |
|
|
|
def __init__(self, tokenizer, **kwargs): |
|
super().__init__() |
|
args = argparse.Namespace(tokenizer=tokenizer, **kwargs) |
|
self.tokenizer = encoders.build_tokenizer(args) |
|
assert self.tokenizer is not None |
|
|
|
def encode(self, sentence: str) -> str: |
|
return self.tokenizer.encode(sentence) |
|
|
|
def decode(self, sentence: str) -> str: |
|
return self.tokenizer.decode(sentence) |
|
|