TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import os
import random
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from . import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
F0_FRAME_SPACE = 0.005 # sec
logger = logging.getLogger(__name__)
class ExpressiveCodeDataConfig(object):
def __init__(self, json_path):
with open(json_path, "r") as f:
self.config = json.load(f)
self._manifests = self.config["manifests"]
@property
def manifests(self):
return self._manifests
@property
def n_units(self):
return self.config["n_units"]
@property
def sampling_rate(self):
return self.config["sampling_rate"]
@property
def code_hop_size(self):
return self.config["code_hop_size"]
@property
def f0_stats(self):
"""pre-computed f0 statistics path"""
return self.config.get("f0_stats", None)
@property
def f0_vq_type(self):
"""naive or precomp"""
return self.config["f0_vq_type"]
@property
def f0_vq_name(self):
return self.config["f0_vq_name"]
def get_f0_vq_naive_quantizer(self, log, norm_mean, norm_std):
key = "log" if log else "linear"
if norm_mean and norm_std:
key += "_mean_std_norm"
elif norm_mean:
key += "_mean_norm"
else:
key += "_none_norm"
return self.config["f0_vq_naive_quantizer"][key]
@property
def f0_vq_n_units(self):
return self.config["f0_vq_n_units"]
@property
def multispkr(self):
"""how to parse speaker label from audio path"""
return self.config.get("multispkr", None)
def get_f0(audio, rate=16000):
try:
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
from librosa.util import normalize
except ImportError:
raise "Please install amfm_decompy (`pip install AMFM-decompy`) and librosa (`pip install librosa`)."
assert audio.ndim == 1
frame_length = 20.0 # ms
to_pad = int(frame_length / 1000 * rate) // 2
audio = normalize(audio) * 0.95
audio = np.pad(audio, (to_pad, to_pad), "constant", constant_values=0)
audio = basic.SignalObj(audio, rate)
pitch = pYAAPT.yaapt(
audio,
frame_length=frame_length,
frame_space=F0_FRAME_SPACE * 1000,
nccf_thresh1=0.25,
tda_frame_length=25.0,
)
f0 = pitch.samp_values
return f0
def interpolate_f0(f0):
try:
from scipy.interpolate import interp1d
except ImportError:
raise "Please install scipy (`pip install scipy`)"
orig_t = np.arange(f0.shape[0])
f0_interp = f0[:]
ii = f0_interp != 0
if ii.sum() > 1:
f0_interp = interp1d(
orig_t[ii], f0_interp[ii], bounds_error=False, kind="linear", fill_value=0
)(orig_t)
f0_interp = torch.Tensor(f0_interp).type_as(f0).to(f0.device)
return f0_interp
def naive_quantize(x, edges):
bin_idx = (x.view(-1, 1) > edges.view(1, -1)).long().sum(dim=1)
return bin_idx
def load_wav(full_path):
try:
import soundfile as sf
except ImportError:
raise "Please install soundfile (`pip install SoundFile`)"
data, sampling_rate = sf.read(full_path)
return data, sampling_rate
def parse_code(code_str, dictionary, append_eos):
code, duration = torch.unique_consecutive(
torch.ShortTensor(list(map(int, code_str.split()))), return_counts=True
)
code = " ".join(map(str, code.tolist()))
code = dictionary.encode_line(code, append_eos).short()
if append_eos:
duration = torch.cat((duration, duration.new_zeros((1,))), dim=0) # eos
duration = duration.short()
return code, duration
def parse_manifest(manifest, dictionary):
audio_files = []
codes = []
durations = []
speakers = []
with open(manifest) as info:
for line in info.readlines():
sample = eval(line.strip())
if "cpc_km100" in sample:
k = "cpc_km100"
elif "hubert_km100" in sample:
k = "hubert_km100"
elif "phone" in sample:
k = "phone"
else:
assert False, "unknown format"
code = sample[k]
code, duration = parse_code(code, dictionary, append_eos=True)
codes.append(code)
durations.append(duration)
audio_files.append(sample["audio"])
speakers.append(sample.get("speaker", None))
return audio_files, codes, durations, speakers
def parse_speaker(path, method):
if type(path) == str:
path = Path(path)
if method == "parent_name":
return path.parent.name
elif method == "parent_parent_name":
return path.parent.parent.name
elif method == "_":
return path.name.split("_")[0]
elif method == "single":
return "A"
elif callable(method):
return method(path)
else:
raise NotImplementedError()
def get_f0_by_filename(filename, tgt_sampling_rate):
audio, sampling_rate = load_wav(filename)
if sampling_rate != tgt_sampling_rate:
raise ValueError(
"{} SR doesn't match target {} SR".format(sampling_rate, tgt_sampling_rate)
)
# compute un-interpolated f0, and use Ann's interp in __getitem__ if set
f0 = get_f0(audio, rate=tgt_sampling_rate)
f0 = torch.from_numpy(f0.astype(np.float32))
return f0
def align_f0_to_durations(f0, durations, f0_code_ratio, tol=1):
code_len = durations.sum()
targ_len = int(f0_code_ratio * code_len)
diff = f0.size(0) - targ_len
assert abs(diff) <= tol, (
f"Cannot subsample F0: |{f0.size(0)} - {f0_code_ratio}*{code_len}|"
f" > {tol} (dur=\n{durations})"
)
if diff > 0:
f0 = f0[:targ_len]
elif diff < 0:
f0 = torch.cat((f0, f0.new_full((-diff,), f0[-1])), 0)
f0_offset = 0.0
seg_f0s = []
for dur in durations:
f0_dur = dur.item() * f0_code_ratio
seg_f0 = f0[int(f0_offset) : int(f0_offset + f0_dur)]
seg_f0 = seg_f0[seg_f0 != 0]
if len(seg_f0) == 0:
seg_f0 = torch.tensor(0).type(seg_f0.type())
else:
seg_f0 = seg_f0.mean()
seg_f0s.append(seg_f0)
f0_offset += f0_dur
assert int(f0_offset) == f0.size(0), f"{f0_offset} {f0.size()} {durations.sum()}"
return torch.tensor(seg_f0s)
class Paddings(object):
def __init__(self, code_val, dur_val=0, f0_val=-2.0):
self.code = code_val
self.dur = dur_val
self.f0 = f0_val
class Shifts(object):
def __init__(self, shifts_str, pads):
self._shifts = list(map(int, shifts_str.split(",")))
assert len(self._shifts) == 2, self._shifts
assert all(s >= 0 for s in self._shifts)
self.extra_length = max(s for s in self._shifts)
self.pads = pads
@property
def dur(self):
return self._shifts[0]
@property
def f0(self):
return self._shifts[1]
@staticmethod
def shift_one(seq, left_pad_num, right_pad_num, pad):
assert seq.ndim == 1
bos = seq.new_full((left_pad_num,), pad)
eos = seq.new_full((right_pad_num,), pad)
seq = torch.cat([bos, seq, eos])
mask = torch.ones_like(seq).bool()
mask[left_pad_num : len(seq) - right_pad_num] = 0
return seq, mask
def __call__(self, code, dur, f0):
if self.extra_length == 0:
code_mask = torch.zeros_like(code).bool()
dur_mask = torch.zeros_like(dur).bool()
f0_mask = torch.zeros_like(f0).bool()
return code, code_mask, dur, dur_mask, f0, f0_mask
code, code_mask = self.shift_one(code, 0, self.extra_length, self.pads.code)
dur, dur_mask = self.shift_one(
dur, self.dur, self.extra_length - self.dur, self.pads.dur
)
f0, f0_mask = self.shift_one(
f0, self.f0, self.extra_length - self.f0, self.pads.f0
)
return code, code_mask, dur, dur_mask, f0, f0_mask
class CodeDataset(FairseqDataset):
def __init__(
self,
manifest,
dictionary,
dur_dictionary,
f0_dictionary,
config,
discrete_dur,
discrete_f0,
log_f0,
normalize_f0_mean,
normalize_f0_std,
interpolate_f0,
return_filename=False,
strip_filename=True,
shifts="0,0",
return_continuous_f0=False,
):
random.seed(1234)
self.dictionary = dictionary
self.dur_dictionary = dur_dictionary
self.f0_dictionary = f0_dictionary
self.config = config
# duration config
self.discrete_dur = discrete_dur
# pitch config
self.discrete_f0 = discrete_f0
self.log_f0 = log_f0
self.normalize_f0_mean = normalize_f0_mean
self.normalize_f0_std = normalize_f0_std
self.interpolate_f0 = interpolate_f0
self.return_filename = return_filename
self.strip_filename = strip_filename
self.f0_code_ratio = config.code_hop_size / (
config.sampling_rate * F0_FRAME_SPACE
)
# use lazy loading to avoid sharing file handlers across workers
self.manifest = manifest
self._codes = None
self._durs = None
self._f0s = None
with open(f"{manifest}.leng.txt", "r") as f:
lengs = [int(line.rstrip()) for line in f]
edges = np.cumsum([0] + lengs)
self.starts, self.ends = edges[:-1], edges[1:]
with open(f"{manifest}.path.txt", "r") as f:
self.file_names = [line.rstrip() for line in f]
logger.info(f"num entries: {len(self.starts)}")
if os.path.exists(f"{manifest}.f0_stat.pt"):
self.f0_stats = torch.load(f"{manifest}.f0_stat.pt")
elif config.f0_stats:
self.f0_stats = torch.load(config.f0_stats)
self.multispkr = config.multispkr
if config.multispkr:
with open(f"{manifest}.speaker.txt", "r") as f:
self.spkrs = [line.rstrip() for line in f]
self.id_to_spkr = sorted(self.spkrs)
self.spkr_to_id = {k: v for v, k in enumerate(self.id_to_spkr)}
self.pads = Paddings(
dictionary.pad(),
0, # use 0 for duration padding
f0_dictionary.pad() if discrete_f0 else -5.0,
)
self.shifts = Shifts(shifts, pads=self.pads)
self.return_continuous_f0 = return_continuous_f0
def get_data_handlers(self):
logging.info(f"loading data for {self.manifest}")
self._codes = np.load(f"{self.manifest}.code.npy", mmap_mode="r")
self._durs = np.load(f"{self.manifest}.dur.npy", mmap_mode="r")
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
self._f0s = np.load(
f"{self.manifest}.{self.config.f0_vq_name}.npy", mmap_mode="r"
)
elif self.config.f0_vq_type == "naive":
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
quantizers_path = self.config.get_f0_vq_naive_quantizer(
self.log_f0, self.normalize_f0_mean, self.normalize_f0_std
)
quantizers = torch.load(quantizers_path)
n_units = self.config.f0_vq_n_units
self._f0_quantizer = torch.from_numpy(quantizers[n_units])
else:
raise ValueError(f"f0_vq_type {self.config.f0_vq_type} not supported")
else:
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
def preprocess_f0(self, f0, stats):
"""
1. interpolate
2. log transform (keep unvoiced frame 0)
"""
# TODO: change this to be dependent on config for naive quantizer
f0 = f0.clone()
if self.interpolate_f0:
f0 = interpolate_f0(f0)
mask = f0 != 0 # only process voiced frames
if self.log_f0:
f0[mask] = f0[mask].log()
if self.normalize_f0_mean:
mean = stats["logf0_mean"] if self.log_f0 else stats["f0_mean"]
f0[mask] = f0[mask] - mean
if self.normalize_f0_std:
std = stats["logf0_std"] if self.log_f0 else stats["f0_std"]
f0[mask] = f0[mask] / std
return f0
def _get_raw_item(self, index):
start, end = self.starts[index], self.ends[index]
if self._codes is None:
self.get_data_handlers()
code = torch.from_numpy(np.array(self._codes[start:end])).long()
dur = torch.from_numpy(np.array(self._durs[start:end]))
f0 = torch.from_numpy(np.array(self._f0s[start:end]))
return code, dur, f0
def __getitem__(self, index):
code, dur, f0 = self._get_raw_item(index)
code = torch.cat([code.new([self.dictionary.bos()]), code])
# use 0 for eos and bos
dur = torch.cat([dur.new([0]), dur])
if self.discrete_dur:
dur = self.dur_dictionary.encode_line(
" ".join(map(str, dur.tolist())), append_eos=False
).long()
else:
dur = dur.float()
# TODO: find a more elegant approach
raw_f0 = None
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
f0 = self.f0_dictionary.encode_line(
" ".join(map(str, f0.tolist())), append_eos=False
).long()
else:
f0 = f0.float()
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
if self.return_continuous_f0:
raw_f0 = f0
raw_f0 = torch.cat([raw_f0.new([self.f0_dictionary.bos()]), raw_f0])
f0 = naive_quantize(f0, self._f0_quantizer)
f0 = torch.cat([f0.new([self.f0_dictionary.bos()]), f0])
else:
f0 = f0.float()
if self.multispkr:
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
else:
f0 = self.preprocess_f0(f0, self.f0_stats)
f0 = torch.cat([f0.new([0]), f0])
if raw_f0 is not None:
*_, raw_f0, raw_f0_mask = self.shifts(code, dur, raw_f0)
else:
raw_f0_mask = None
code, code_mask, dur, dur_mask, f0, f0_mask = self.shifts(code, dur, f0)
if raw_f0_mask is not None:
assert (raw_f0_mask == f0_mask).all()
# is a padded frame if either input or output is padded
feats = {
"source": code[:-1],
"target": code[1:],
"mask": code_mask[1:].logical_or(code_mask[:-1]),
"dur_source": dur[:-1],
"dur_target": dur[1:],
"dur_mask": dur_mask[1:].logical_or(dur_mask[:-1]),
"f0_source": f0[:-1],
"f0_target": f0[1:],
"f0_mask": f0_mask[1:].logical_or(f0_mask[:-1]),
}
if raw_f0 is not None:
feats["raw_f0"] = raw_f0[1:]
if self.return_filename:
fname = self.file_names[index]
feats["filename"] = (
fname if not self.strip_filename else Path(fname).with_suffix("").name
)
return feats
def __len__(self):
return len(self.starts)
def size(self, index):
return self.ends[index] - self.starts[index] + self.shifts.extra_length
def num_tokens(self, index):
return self.size(index)
def collater(self, samples):
pad_idx, eos_idx = self.dictionary.pad(), self.dictionary.eos()
if len(samples) == 0:
return {}
src_tokens = data_utils.collate_tokens(
[s["source"] for s in samples], pad_idx, eos_idx, left_pad=False
)
tgt_tokens = data_utils.collate_tokens(
[s["target"] for s in samples],
pad_idx=pad_idx,
eos_idx=pad_idx, # appending padding, eos is there already
left_pad=False,
)
src_durs, tgt_durs = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.dur,
eos_idx=self.pads.dur,
left_pad=False,
)
for k in ["dur_source", "dur_target"]
]
src_f0s, tgt_f0s = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
for k in ["f0_source", "f0_target"]
]
mask, dur_mask, f0_mask = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=1,
eos_idx=1,
left_pad=False,
)
for k in ["mask", "dur_mask", "f0_mask"]
]
src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
n_tokens = sum(len(s["source"]) for s in samples)
result = {
"nsentences": len(samples),
"ntokens": n_tokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"dur_src": src_durs,
"f0_src": src_f0s,
},
"target": tgt_tokens,
"dur_target": tgt_durs,
"f0_target": tgt_f0s,
"mask": mask,
"dur_mask": dur_mask,
"f0_mask": f0_mask,
}
if "filename" in samples[0]:
result["filename"] = [s["filename"] for s in samples]
# TODO: remove this hack into the inference dataset
if "prefix" in samples[0]:
result["prefix"] = [s["prefix"] for s in samples]
if "raw_f0" in samples[0]:
raw_f0s = data_utils.collate_tokens(
[s["raw_f0"] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
result["raw_f0"] = raw_f0s
return result