|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from typing import Dict |
|
|
|
from fairseq.data.monolingual_dataset import MonolingualDataset |
|
|
|
from . import FairseqDataset |
|
|
|
|
|
class LMContextWindowDataset(FairseqDataset): |
|
""" |
|
Wraps a MonolingualDataset and provides more context for evaluation. |
|
|
|
Each item in the new dataset will have a maximum size of |
|
``tokens_per_sample + context_window``. |
|
|
|
Args: |
|
dataset: dataset to wrap |
|
tokens_per_sample (int): the max number of tokens in each dataset item |
|
context_window (int): the number of accumulated tokens to add to each |
|
dataset item |
|
pad_idx (int): padding symbol |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset: MonolingualDataset, |
|
tokens_per_sample: int, |
|
context_window: int, |
|
pad_idx: int, |
|
): |
|
assert context_window > 0 |
|
self.dataset = dataset |
|
self.tokens_per_sample = tokens_per_sample |
|
self.context_window = context_window |
|
self.pad_idx = pad_idx |
|
self.prev_tokens = np.empty([0]) |
|
|
|
def __getitem__(self, index): |
|
return self.dataset[index] |
|
|
|
def __len__(self): |
|
return len(self.dataset) |
|
|
|
def collater(self, samples) -> Dict: |
|
sample = self.dataset.collater(samples) |
|
|
|
pad = self.pad_idx |
|
max_sample_len = self.tokens_per_sample + self.context_window |
|
|
|
bsz, tsz = sample["net_input"]["src_tokens"].shape |
|
start_idxs = [0] * bsz |
|
toks = sample["net_input"]["src_tokens"] |
|
lengths = sample["net_input"]["src_lengths"] |
|
tgt = sample["target"] |
|
new_toks = np.empty([bsz, tsz + self.context_window], dtype=np.int64) |
|
new_tgt = np.full([bsz, tsz + self.context_window], pad, dtype=np.int64) |
|
sample_lens = toks.ne(pad).long().sum(dim=1).cpu() |
|
for i in range(bsz): |
|
sample_len = sample_lens[i] |
|
extra = len(self.prev_tokens) + sample_len - max_sample_len |
|
if extra > 0: |
|
self.prev_tokens = self.prev_tokens[extra:] |
|
pads = np.full(self.context_window - len(self.prev_tokens), pad) |
|
new_toks[i] = np.concatenate([self.prev_tokens, toks[i].numpy(), pads]) |
|
new_tgt[ |
|
i, len(self.prev_tokens) : len(self.prev_tokens) + len(tgt[i]) |
|
] = tgt[i] |
|
start_idxs[i] = len(self.prev_tokens) |
|
lengths[i] += len(self.prev_tokens) |
|
self.prev_tokens = new_toks[i][new_toks[i] != pad][-self.context_window :] |
|
sample["net_input"]["src_tokens"] = torch.from_numpy(new_toks) |
|
sample["target"] = torch.from_numpy(new_tgt) |
|
sample["start_indices"] = start_idxs |
|
return sample |
|
|
|
def num_tokens(self, index): |
|
return self.dataset.num_tokens(index) |
|
|
|
def size(self, index): |
|
return self.dataset.size(index) |
|
|
|
def ordered_indices(self): |
|
|
|
return np.arange(len(self.dataset)) |
|
|
|
@property |
|
def supports_prefetch(self): |
|
return getattr(self.dataset, "supports_prefetch", False) |
|
|
|
def prefetch(self, indices): |
|
return self.dataset.prefetch(indices) |
|
|