TomatoCocotree
上传
6a62ffb
raw
history blame
31.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import math
import operator
import os
import queue
import time
from threading import Thread
from typing import Iterator, List
import numpy as np
import torch
from fairseq.data import data_utils
logger = logging.getLogger(__name__)
# Object used by _background_consumer to signal the source is exhausted
# to the main thread.
_sentinel = object()
class CountingIterator(object):
"""Wrapper around an iterable that maintains the iteration count.
Args:
iterable (iterable): iterable to wrap
start (int): starting iteration count. Note that this doesn't
actually advance the iterator.
total (int): override the iterator length returned by ``__len``.
This can be used to truncate *iterator*.
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, start=None, total=None):
self._itr = iter(iterable)
self.n = start or getattr(iterable, "n", 0)
self.total = total if total is not None else self.n + len(iterable)
def __len__(self):
return self.total
def __iter__(self):
return self
def __next__(self):
if not self.has_next():
raise StopIteration
try:
x = next(self._itr)
except StopIteration:
raise IndexError(
f"Iterator expected to have length {self.total}, "
f"but exhausted at position {self.n}."
)
self.n += 1
return x
def has_next(self):
"""Whether the iterator has been exhausted."""
return self.n < self.total
def skip(self, n):
"""Fast-forward the iterator by skipping n elements."""
for _ in range(n):
next(self)
return self
def take(self, n):
"""Truncate the iterator to n elements at most."""
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
if hasattr(self._itr, "take"):
self._itr.take(max(n - self.n, 0))
return self
class EpochBatchIterating(object):
def __len__(self) -> int:
raise NotImplementedError
@property
def next_epoch_idx(self):
raise NotImplementedError
def next_epoch_itr(
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True
):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus (bool, optional): ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
set_dataset_epoch (bool, optional): update the wrapped Dataset with
the new epoch number (default: True).
"""
raise NotImplementedError
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
raise NotImplementedError
@property
def iterations_in_epoch(self) -> int:
"""The number of consumed batches in the current epoch."""
raise NotImplementedError
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
raise NotImplementedError
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
raise NotImplementedError
@property
def first_batch(self):
return "DUMMY"
class StreamingEpochBatchIterator(EpochBatchIterating):
"""A steaming-style iterator over a :class:`torch.utils.data.IterableDataset`.
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
max_sentences: batch size
collate_fn (callable): merges a list of samples to form a mini-batch
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
"""
def __init__(
self,
dataset,
max_sentences=1,
collate_fn=None,
epoch=1,
num_workers=0,
buffer_size=0,
timeout=0,
persistent_workers=False,
):
assert isinstance(dataset, torch.utils.data.IterableDataset)
self.dataset = dataset
self.max_sentences = max_sentences
self.collate_fn = collate_fn
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self.num_workers = num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self.buffer_size = min(buffer_size, 20)
self.timeout = timeout
self.persistent_workers = persistent_workers
self._current_epoch_iterator = None
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._current_epoch_iterator is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True
):
self.epoch = self.next_epoch_idx
if set_dataset_epoch and hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
self._current_epoch_iterator = self._get_iterator_for_epoch(self.epoch, shuffle)
return self._current_epoch_iterator
def end_of_epoch(self) -> bool:
return not self._current_epoch_iterator.has_next()
@property
def iterations_in_epoch(self) -> int:
if self._current_epoch_iterator is not None:
return self._current_epoch_iterator.n
return 0
def state_dict(self):
return {
"epoch": self.epoch,
}
def load_state_dict(self, state_dict):
self.epoch = state_dict["epoch"]
def _get_iterator_for_epoch(self, epoch, shuffle, offset=0):
if self.num_workers > 0:
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning"
# Create data loader
worker_init_fn = getattr(self.dataset, "worker_init_fn", None)
itr = torch.utils.data.DataLoader(
self.dataset,
batch_size=self.max_sentences,
collate_fn=self.collate_fn,
num_workers=self.num_workers,
timeout=self.timeout,
worker_init_fn=worker_init_fn,
pin_memory=True,
persistent_workers=self.persistent_workers,
)
# Wrap with a BufferedIterator if needed
if self.buffer_size > 0:
itr = BufferedIterator(self.buffer_size, itr)
# Wrap with CountingIterator
itr = CountingIterator(itr, start=offset)
return itr
class FrozenBatchSampler:
def __init__(
self,
ordered_batches,
epoch,
fix_batches_to_gpus,
shuffle,
initial_offset,
):
self.ordered_batches = ordered_batches
self.fix_batches_to_gpus = fix_batches_to_gpus
self.shuffle = shuffle
self.make_batches_for_epoch(epoch, initial_offset)
def make_batches_for_epoch(self, epoch, offset=0):
self.batches = self.ordered_batches(
epoch, self.fix_batches_to_gpus, self.shuffle
)
if offset > 0:
self.batches = self.batches[offset:]
def __iter__(self) -> Iterator[List[int]]:
return iter(self.batches)
def __len__(self) -> int:
return len(self.batches)
class EpochBatchIterator(EpochBatchIterating):
"""A multi-epoch iterator over a :class:`torch.utils.data.Dataset`.
Compared to :class:`torch.utils.data.DataLoader`, this iterator:
- can be reused across multiple epochs with the :func:`next_epoch_itr`
method (optionally shuffled between epochs)
- can be serialized/deserialized with the :func:`state_dict` and
:func:`load_state_dict` methods
- supports sharding with the *num_shards* and *shard_id* arguments
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
collate_fn (callable): merges a list of samples to form a mini-batch
batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of
indices, or a callable to create such an iterator (~torch.utils.data.Sampler).
A callable batch_sampler will be called for each epoch to enable per epoch dynamic
batch iterators defined by this callable batch_sampler.
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
disable_shuffling (bool, optional): force disable shuffling
(default: ``False``).
skip_remainder_batch (bool, optional): if set, discard the last batch in an epoch
for the sake of training stability, as the last batch is usually smaller than
local_batch_size * distributed_word_size (default: ``False``).
grouped_shuffling (bool, optional): enable shuffling batches in groups
of num_shards. Ensures that each GPU receives similar length sequences when
batches are sorted by length.
"""
def __init__(
self,
dataset,
collate_fn,
batch_sampler,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
buffer_size=0,
timeout=0,
disable_shuffling=False,
skip_remainder_batch=False,
grouped_shuffling=False,
reuse_dataloader=False,
persistent_workers=False,
):
assert isinstance(dataset, torch.utils.data.Dataset)
self.dataset = dataset
self.collate_fn = collate_fn
self.batch_sampler = batch_sampler
self._frozen_batches = (
tuple(batch_sampler) if not callable(batch_sampler) else None
)
self.seed = seed
self.num_shards = num_shards
self.shard_id = shard_id
self.num_workers = num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self.buffer_size = min(buffer_size, 20)
self.timeout = timeout
self.disable_shuffling = disable_shuffling
self.skip_remainder_batch = skip_remainder_batch
self.grouped_shuffling = grouped_shuffling
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self.shuffle = not disable_shuffling
self._cur_epoch_itr = None
self._next_epoch_itr = None
self._supports_prefetch = getattr(dataset, "supports_prefetch", False)
self.dataloader = None
self.reuse_dataloader = reuse_dataloader
self.persistent_workers = persistent_workers
@property
def frozen_batches(self):
if self._frozen_batches is None:
self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch))
return self._frozen_batches
@property
def first_batch(self):
if len(self.frozen_batches) == 0:
raise Exception(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if getattr(self.dataset, "supports_fetch_outside_dataloader", True):
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]])
else:
return "DUMMY"
def __len__(self):
return int(math.ceil(len(self.frozen_batches) / float(self.num_shards)))
@property
def n(self):
return self.iterations_in_epoch
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._next_epoch_itr is not None:
return self.epoch
elif self._cur_epoch_itr is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True
):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus (bool, optional): ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
set_dataset_epoch (bool, optional): update the wrapped Dataset with
the new epoch number (default: True).
"""
if self.disable_shuffling:
shuffle = False
prev_epoch = self.epoch
self.epoch = self.next_epoch_idx
if set_dataset_epoch and hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
if self._next_epoch_itr is not None:
self._cur_epoch_itr = self._next_epoch_itr
self._next_epoch_itr = None
else:
if callable(self.batch_sampler) and prev_epoch != self.epoch:
# reset _frozen_batches to refresh the next epoch
self._frozen_batches = None
self._cur_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle,
fix_batches_to_gpus=fix_batches_to_gpus,
)
self.shuffle = shuffle
return self._cur_epoch_itr
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
return not self._cur_epoch_itr.has_next()
@property
def iterations_in_epoch(self):
"""The number of consumed batches in the current epoch."""
if self._cur_epoch_itr is not None:
return self._cur_epoch_itr.n
elif self._next_epoch_itr is not None:
return self._next_epoch_itr.n
return 0
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
if self.end_of_epoch():
epoch = self.epoch + 1
iter_in_epoch = 0
else:
epoch = self.epoch
iter_in_epoch = self.iterations_in_epoch
return {
"version": 2,
"epoch": epoch,
"iterations_in_epoch": iter_in_epoch,
"shuffle": self.shuffle,
}
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
self.epoch = state_dict["epoch"]
itr_pos = state_dict.get("iterations_in_epoch", 0)
version = state_dict.get("version", 1)
if itr_pos > 0:
# fast-forward epoch iterator
self._next_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle=state_dict.get("shuffle", True),
offset=itr_pos,
)
if self._next_epoch_itr is None:
if version == 1:
# legacy behavior: we finished the epoch, increment epoch counter
self.epoch += 1
else:
raise RuntimeError(
"Cannot resume training due to dataloader mismatch, please "
"report this to the fairseq developers. You can relaunch "
"training with `--reset-dataloader` and it should work."
)
else:
self._next_epoch_itr = None
def _get_iterator_for_epoch(
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0
):
if self.reuse_dataloader and self.dataloader is not None:
self.epoch_batch_sampler.make_batches_for_epoch(epoch, offset)
itr = self.dataloader
else:
self.epoch_batch_sampler = FrozenBatchSampler(
self.ordered_batches,
epoch,
fix_batches_to_gpus,
shuffle,
initial_offset=offset,
)
if offset > 0 and len(self.epoch_batch_sampler) == 0:
return None
if self.num_workers > 0:
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning"
# Create data loader
itr = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_sampler=self.epoch_batch_sampler,
num_workers=self.num_workers,
timeout=self.timeout,
pin_memory=True,
persistent_workers=self.persistent_workers,
)
if self.reuse_dataloader:
self.dataloader = itr
# Wrap with a BufferedIterator if needed
if self.buffer_size > 0:
itr = BufferedIterator(self.buffer_size, itr)
# Wrap with CountingIterator
itr = CountingIterator(itr, start=offset)
if self.skip_remainder_batch:
# TODO: Below is a lazy implementation which discard the final batch regardless
# of whether it is a full batch or not.
total_num_itrs = len(self.epoch_batch_sampler) - 1
itr.take(total_num_itrs)
logger.info(f"skip final residual batch, total_num_itrs = {total_num_itrs}")
return itr
def ordered_batches(self, epoch, fix_batches_to_gpus, shuffle):
def shuffle_batches(batches, seed):
with data_utils.numpy_seed(seed):
if self.grouped_shuffling:
grouped_batches = [
batches[(i * self.num_shards) : ((i + 1) * self.num_shards)]
for i in range((len(batches) // self.num_shards))
]
np.random.shuffle(grouped_batches)
batches = list(itertools.chain(*grouped_batches))
else:
np.random.shuffle(batches)
return batches
if self._supports_prefetch:
batches = self.frozen_batches
if shuffle and not fix_batches_to_gpus:
batches = shuffle_batches(list(batches), self.seed + epoch)
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
self.dataset.prefetch([i for s in batches for i in s])
if shuffle and fix_batches_to_gpus:
batches = shuffle_batches(batches, self.seed + epoch + self.shard_id)
else:
if shuffle:
batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch)
else:
batches = self.frozen_batches
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
return batches
class GroupedIterator(CountingIterator):
"""Wrapper around an iterable that returns groups (chunks) of items.
Args:
iterable (iterable): iterable to wrap
chunk_size (int): size of each chunk
skip_remainder_batch (bool, optional): if set, discard the last grouped batch in
each training epoch, as the last grouped batch is usually smaller than
local_batch_size * distributed_word_size * chunk_size (default: ``False``).
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, chunk_size, skip_remainder_batch=False):
if skip_remainder_batch:
total_num_itrs = int(math.floor(len(iterable) / float(chunk_size)))
logger.info(
f"skip final residual batch, grouped total_num_itrs = {total_num_itrs}"
)
else:
total_num_itrs = int(math.ceil(len(iterable) / float(chunk_size)))
logger.info(f"grouped total_num_itrs = {total_num_itrs}")
itr = _chunk_iterator(iterable, chunk_size, skip_remainder_batch)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))),
total=total_num_itrs,
)
self.chunk_size = chunk_size
if skip_remainder_batch:
self.take(total_num_itrs)
# TODO: [Hack] Here the grouped iterator modifies the base iterator size so that
# training can move into the next epoch once the grouped iterator is exhausted.
# Double-check this implementation in case unexpected behavior occurs.
iterable.take(total_num_itrs * chunk_size)
def _chunk_iterator(itr, chunk_size, skip_remainder_batch=False):
chunk = []
for x in itr:
chunk.append(x)
if len(chunk) == chunk_size:
yield chunk
chunk = []
if not skip_remainder_batch and len(chunk) > 0:
yield chunk
class ShardedIterator(CountingIterator):
"""A sharded wrapper around an iterable, padded to length.
Args:
iterable (iterable): iterable to wrap
num_shards (int): number of shards to split the iterable into
shard_id (int): which shard to iterator over
fill_value (Any, optional): padding value when the iterable doesn't
evenly divide *num_shards* (default: None).
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(
self, iterable, num_shards, shard_id, fill_value=None, skip_remainder_batch=None
):
"""
Args:
skip_remainder_batch: ignored"""
if shard_id < 0 or shard_id >= num_shards:
raise ValueError("shard_id must be between 0 and num_shards")
sharded_len = int(math.ceil(len(iterable) / float(num_shards)))
itr = map(
operator.itemgetter(1),
itertools.zip_longest(
range(sharded_len),
itertools.islice(iterable, shard_id, len(iterable), num_shards),
fillvalue=fill_value,
),
)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))),
total=sharded_len,
)
class BackgroundConsumer(Thread):
def __init__(self, queue, source, max_len, cuda_device):
Thread.__init__(self)
self._queue = queue
self._source = source
self._max_len = max_len
self.count = 0
self.cuda_device = cuda_device
def run(self):
# set_device to avoid creation of GPU0 context when using pin_memory
if self.cuda_device is not None:
torch.cuda.set_device(self.cuda_device)
try:
for item in self._source:
self._queue.put(item)
# Stop if we reached the maximum length
self.count += 1
if self._max_len is not None and self.count >= self._max_len:
break
# Signal the consumer we are done.
self._queue.put(_sentinel)
except Exception as e:
self._queue.put(e)
class BufferedIterator(object):
def __init__(self, size, iterable):
self._queue = queue.Queue(size)
self._iterable = iterable
self._consumer = None
self.start_time = time.time()
self.warning_time = None
self.total = len(iterable)
def _create_consumer(self):
self._consumer = BackgroundConsumer(
self._queue,
self._iterable,
self.total,
torch.cuda.current_device() if torch.cuda.is_available() else None,
)
self._consumer.daemon = True
self._consumer.start()
def __iter__(self):
return self
def __len__(self):
return self.total
def take(self, n):
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
if hasattr(self._iterable, "take"):
self._iterable.take(n)
return self
def __next__(self):
# Create consumer if not created yet
if self._consumer is None:
self._create_consumer()
# Notify the user if there is a data loading bottleneck
if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)):
if time.time() - self.start_time > 5 * 60:
if (
self.warning_time is None
or time.time() - self.warning_time > 15 * 60
):
logger.debug(
"Data loading buffer is empty or nearly empty. This may "
"indicate a data loading bottleneck, and increasing the "
"number of workers (--num-workers) may help."
)
self.warning_time = time.time()
# Get next example
item = self._queue.get(True)
if isinstance(item, Exception):
raise item
if item is _sentinel:
raise StopIteration()
return item
class GroupedEpochBatchIterator(EpochBatchIterator):
"""Grouped version of EpochBatchIterator
It takes several samplers from different datasets.
Each epoch shuffle the dataset wise sampler individually with different
random seed. The those sub samplers are combined with into
one big samplers with deterministic permutation to mix batches from
different datasets. It will act like EpochBatchIterator but make sure
1) data from one data set each time
2) for different workers, they use the same order to fetch the data
so they will use data from the same dataset everytime
mult_rate is used for update_freq > 1 case where we want to make sure update_freq
mini-batches come from same source
"""
def __init__(
self,
dataset,
collate_fn,
batch_samplers,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=0,
mult_rate=1,
buffer_size=0,
skip_remainder_batch=False,
reuse_dataloader=False,
persistent_workers=False,
):
super().__init__(
dataset,
collate_fn,
batch_samplers,
seed,
num_shards,
shard_id,
num_workers,
epoch,
buffer_size,
skip_remainder_batch=skip_remainder_batch,
reuse_dataloader=reuse_dataloader,
persistent_workers=persistent_workers,
)
# level 0: sub-samplers 1: batch_idx 2: batches
self._frozen_batches = tuple([tuple(sub_batch) for sub_batch in batch_samplers])
self.step_size = mult_rate * num_shards
self.lengths = [
(len(x) // self.step_size) * self.step_size for x in self.frozen_batches
]
def __len__(self):
return sum(self.lengths)
@property
def first_batch(self):
if len(self.frozen_batches) == 0:
raise Exception(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if self.dataset.supports_fetch_outside_dataloader:
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0][0]])
else:
return "DUMMY"
def _get_iterator_for_epoch(
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0
):
def shuffle_batches(batches, seed):
with data_utils.numpy_seed(seed):
np.random.shuffle(batches)
return batches
def return_full_batches(batch_sets, seed, shuffle):
if shuffle:
batch_sets = [shuffle_batches(list(x), seed) for x in batch_sets]
batch_sets = [
batch_sets[i][: self.lengths[i]] for i in range(len(batch_sets))
]
batches = list(itertools.chain.from_iterable(batch_sets))
if shuffle:
with data_utils.numpy_seed(seed):
idx = np.random.permutation(len(batches) // self.step_size)
if len(idx) * self.step_size != len(batches):
raise ValueError(
"ERROR: %d %d %d %d"
% (len(idx), self.step_size, len(batches), self.shard_id),
":".join(["%d" % x for x in self.lengths]),
)
mini_shards = [
batches[i * self.step_size : (i + 1) * self.step_size]
for i in idx
]
batches = list(itertools.chain.from_iterable(mini_shards))
return batches
if self._supports_prefetch:
raise NotImplementedError("To be implemented")
else:
batches = return_full_batches(
self.frozen_batches, self.seed + epoch, shuffle
)
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
if offset > 0 and offset >= len(batches):
return None
if self.num_workers > 0:
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning"
itr = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_sampler=batches[offset:],
num_workers=self.num_workers,
persistent_workers=self.persistent_workers,
)
if self.buffer_size > 0:
itr = BufferedIterator(self.buffer_size, itr)
return CountingIterator(itr, start=offset)