|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import logging |
|
import math |
|
import operator |
|
import os |
|
import queue |
|
import time |
|
from threading import Thread |
|
from typing import Iterator, List |
|
|
|
import numpy as np |
|
import torch |
|
from fairseq.data import data_utils |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
_sentinel = object() |
|
|
|
|
|
class CountingIterator(object): |
|
"""Wrapper around an iterable that maintains the iteration count. |
|
|
|
Args: |
|
iterable (iterable): iterable to wrap |
|
start (int): starting iteration count. Note that this doesn't |
|
actually advance the iterator. |
|
total (int): override the iterator length returned by ``__len``. |
|
This can be used to truncate *iterator*. |
|
|
|
Attributes: |
|
n (int): number of elements consumed from this iterator |
|
""" |
|
|
|
def __init__(self, iterable, start=None, total=None): |
|
self._itr = iter(iterable) |
|
self.n = start or getattr(iterable, "n", 0) |
|
self.total = total if total is not None else self.n + len(iterable) |
|
|
|
def __len__(self): |
|
return self.total |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
if not self.has_next(): |
|
raise StopIteration |
|
try: |
|
x = next(self._itr) |
|
except StopIteration: |
|
raise IndexError( |
|
f"Iterator expected to have length {self.total}, " |
|
f"but exhausted at position {self.n}." |
|
) |
|
self.n += 1 |
|
return x |
|
|
|
def has_next(self): |
|
"""Whether the iterator has been exhausted.""" |
|
return self.n < self.total |
|
|
|
def skip(self, n): |
|
"""Fast-forward the iterator by skipping n elements.""" |
|
for _ in range(n): |
|
next(self) |
|
return self |
|
|
|
def take(self, n): |
|
"""Truncate the iterator to n elements at most.""" |
|
self.total = min(self.total, n) |
|
|
|
if hasattr(self._itr, "take"): |
|
self._itr.take(max(n - self.n, 0)) |
|
return self |
|
|
|
|
|
class EpochBatchIterating(object): |
|
def __len__(self) -> int: |
|
raise NotImplementedError |
|
|
|
@property |
|
def next_epoch_idx(self): |
|
raise NotImplementedError |
|
|
|
def next_epoch_itr( |
|
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True |
|
): |
|
"""Return a new iterator over the dataset. |
|
|
|
Args: |
|
shuffle (bool, optional): shuffle batches before returning the |
|
iterator (default: True). |
|
fix_batches_to_gpus (bool, optional): ensure that batches are always |
|
allocated to the same shards across epochs. Requires |
|
that :attr:`dataset` supports prefetching (default: False). |
|
set_dataset_epoch (bool, optional): update the wrapped Dataset with |
|
the new epoch number (default: True). |
|
""" |
|
raise NotImplementedError |
|
|
|
def end_of_epoch(self) -> bool: |
|
"""Returns whether the most recent epoch iterator has been exhausted""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def iterations_in_epoch(self) -> int: |
|
"""The number of consumed batches in the current epoch.""" |
|
raise NotImplementedError |
|
|
|
def state_dict(self): |
|
"""Returns a dictionary containing a whole state of the iterator.""" |
|
raise NotImplementedError |
|
|
|
def load_state_dict(self, state_dict): |
|
"""Copies the state of the iterator from the given *state_dict*.""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def first_batch(self): |
|
return "DUMMY" |
|
|
|
|
|
class StreamingEpochBatchIterator(EpochBatchIterating): |
|
"""A steaming-style iterator over a :class:`torch.utils.data.IterableDataset`. |
|
|
|
Args: |
|
dataset (~torch.utils.data.Dataset): dataset from which to load the data |
|
max_sentences: batch size |
|
collate_fn (callable): merges a list of samples to form a mini-batch |
|
num_workers (int, optional): how many subprocesses to use for data |
|
loading. 0 means the data will be loaded in the main process |
|
(default: 0). |
|
epoch (int, optional): the epoch to start the iterator from |
|
(default: 1). |
|
buffer_size (int, optional): the number of batches to keep ready in the |
|
queue. Helps speeding up dataloading. When buffer_size is zero, the |
|
default torch.utils.data.DataLoader preloading is used. |
|
timeout (int, optional): if positive, the timeout value for collecting a batch |
|
from workers. Should always be non-negative (default: ``0``). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
max_sentences=1, |
|
collate_fn=None, |
|
epoch=1, |
|
num_workers=0, |
|
buffer_size=0, |
|
timeout=0, |
|
persistent_workers=False, |
|
): |
|
assert isinstance(dataset, torch.utils.data.IterableDataset) |
|
self.dataset = dataset |
|
self.max_sentences = max_sentences |
|
self.collate_fn = collate_fn |
|
self.epoch = max(epoch, 1) |
|
self.num_workers = num_workers |
|
|
|
|
|
self.buffer_size = min(buffer_size, 20) |
|
self.timeout = timeout |
|
self.persistent_workers = persistent_workers |
|
|
|
self._current_epoch_iterator = None |
|
|
|
@property |
|
def next_epoch_idx(self): |
|
"""Return the epoch index after *next_epoch_itr* is called.""" |
|
if self._current_epoch_iterator is not None and self.end_of_epoch(): |
|
return self.epoch + 1 |
|
else: |
|
return self.epoch |
|
|
|
def next_epoch_itr( |
|
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True |
|
): |
|
self.epoch = self.next_epoch_idx |
|
if set_dataset_epoch and hasattr(self.dataset, "set_epoch"): |
|
self.dataset.set_epoch(self.epoch) |
|
self._current_epoch_iterator = self._get_iterator_for_epoch(self.epoch, shuffle) |
|
return self._current_epoch_iterator |
|
|
|
def end_of_epoch(self) -> bool: |
|
return not self._current_epoch_iterator.has_next() |
|
|
|
@property |
|
def iterations_in_epoch(self) -> int: |
|
if self._current_epoch_iterator is not None: |
|
return self._current_epoch_iterator.n |
|
return 0 |
|
|
|
def state_dict(self): |
|
return { |
|
"epoch": self.epoch, |
|
} |
|
|
|
def load_state_dict(self, state_dict): |
|
self.epoch = state_dict["epoch"] |
|
|
|
def _get_iterator_for_epoch(self, epoch, shuffle, offset=0): |
|
if self.num_workers > 0: |
|
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" |
|
|
|
|
|
worker_init_fn = getattr(self.dataset, "worker_init_fn", None) |
|
itr = torch.utils.data.DataLoader( |
|
self.dataset, |
|
batch_size=self.max_sentences, |
|
collate_fn=self.collate_fn, |
|
num_workers=self.num_workers, |
|
timeout=self.timeout, |
|
worker_init_fn=worker_init_fn, |
|
pin_memory=True, |
|
persistent_workers=self.persistent_workers, |
|
) |
|
|
|
|
|
if self.buffer_size > 0: |
|
itr = BufferedIterator(self.buffer_size, itr) |
|
|
|
|
|
itr = CountingIterator(itr, start=offset) |
|
|
|
return itr |
|
|
|
|
|
class FrozenBatchSampler: |
|
def __init__( |
|
self, |
|
ordered_batches, |
|
epoch, |
|
fix_batches_to_gpus, |
|
shuffle, |
|
initial_offset, |
|
): |
|
self.ordered_batches = ordered_batches |
|
self.fix_batches_to_gpus = fix_batches_to_gpus |
|
self.shuffle = shuffle |
|
self.make_batches_for_epoch(epoch, initial_offset) |
|
|
|
def make_batches_for_epoch(self, epoch, offset=0): |
|
self.batches = self.ordered_batches( |
|
epoch, self.fix_batches_to_gpus, self.shuffle |
|
) |
|
if offset > 0: |
|
self.batches = self.batches[offset:] |
|
|
|
def __iter__(self) -> Iterator[List[int]]: |
|
return iter(self.batches) |
|
|
|
def __len__(self) -> int: |
|
return len(self.batches) |
|
|
|
|
|
class EpochBatchIterator(EpochBatchIterating): |
|
"""A multi-epoch iterator over a :class:`torch.utils.data.Dataset`. |
|
|
|
Compared to :class:`torch.utils.data.DataLoader`, this iterator: |
|
|
|
- can be reused across multiple epochs with the :func:`next_epoch_itr` |
|
method (optionally shuffled between epochs) |
|
- can be serialized/deserialized with the :func:`state_dict` and |
|
:func:`load_state_dict` methods |
|
- supports sharding with the *num_shards* and *shard_id* arguments |
|
|
|
Args: |
|
dataset (~torch.utils.data.Dataset): dataset from which to load the data |
|
collate_fn (callable): merges a list of samples to form a mini-batch |
|
batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of |
|
indices, or a callable to create such an iterator (~torch.utils.data.Sampler). |
|
A callable batch_sampler will be called for each epoch to enable per epoch dynamic |
|
batch iterators defined by this callable batch_sampler. |
|
seed (int, optional): seed for random number generator for |
|
reproducibility (default: 1). |
|
num_shards (int, optional): shard the data iterator into N |
|
shards (default: 1). |
|
shard_id (int, optional): which shard of the data iterator to |
|
return (default: 0). |
|
num_workers (int, optional): how many subprocesses to use for data |
|
loading. 0 means the data will be loaded in the main process |
|
(default: 0). |
|
epoch (int, optional): the epoch to start the iterator from |
|
(default: 1). |
|
buffer_size (int, optional): the number of batches to keep ready in the |
|
queue. Helps speeding up dataloading. When buffer_size is zero, the |
|
default torch.utils.data.DataLoader preloading is used. |
|
timeout (int, optional): if positive, the timeout value for collecting a batch |
|
from workers. Should always be non-negative (default: ``0``). |
|
disable_shuffling (bool, optional): force disable shuffling |
|
(default: ``False``). |
|
skip_remainder_batch (bool, optional): if set, discard the last batch in an epoch |
|
for the sake of training stability, as the last batch is usually smaller than |
|
local_batch_size * distributed_word_size (default: ``False``). |
|
grouped_shuffling (bool, optional): enable shuffling batches in groups |
|
of num_shards. Ensures that each GPU receives similar length sequences when |
|
batches are sorted by length. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
collate_fn, |
|
batch_sampler, |
|
seed=1, |
|
num_shards=1, |
|
shard_id=0, |
|
num_workers=0, |
|
epoch=1, |
|
buffer_size=0, |
|
timeout=0, |
|
disable_shuffling=False, |
|
skip_remainder_batch=False, |
|
grouped_shuffling=False, |
|
reuse_dataloader=False, |
|
persistent_workers=False, |
|
): |
|
assert isinstance(dataset, torch.utils.data.Dataset) |
|
self.dataset = dataset |
|
self.collate_fn = collate_fn |
|
self.batch_sampler = batch_sampler |
|
self._frozen_batches = ( |
|
tuple(batch_sampler) if not callable(batch_sampler) else None |
|
) |
|
self.seed = seed |
|
self.num_shards = num_shards |
|
self.shard_id = shard_id |
|
self.num_workers = num_workers |
|
|
|
|
|
self.buffer_size = min(buffer_size, 20) |
|
self.timeout = timeout |
|
self.disable_shuffling = disable_shuffling |
|
self.skip_remainder_batch = skip_remainder_batch |
|
self.grouped_shuffling = grouped_shuffling |
|
|
|
self.epoch = max(epoch, 1) |
|
self.shuffle = not disable_shuffling |
|
self._cur_epoch_itr = None |
|
self._next_epoch_itr = None |
|
self._supports_prefetch = getattr(dataset, "supports_prefetch", False) |
|
|
|
self.dataloader = None |
|
self.reuse_dataloader = reuse_dataloader |
|
self.persistent_workers = persistent_workers |
|
|
|
@property |
|
def frozen_batches(self): |
|
if self._frozen_batches is None: |
|
self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch)) |
|
return self._frozen_batches |
|
|
|
@property |
|
def first_batch(self): |
|
if len(self.frozen_batches) == 0: |
|
raise Exception( |
|
"The dataset is empty. This could indicate " |
|
"that all elements in the dataset have been skipped. " |
|
"Try increasing the max number of allowed tokens or using " |
|
"a larger dataset." |
|
) |
|
|
|
if getattr(self.dataset, "supports_fetch_outside_dataloader", True): |
|
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]]) |
|
else: |
|
return "DUMMY" |
|
|
|
def __len__(self): |
|
return int(math.ceil(len(self.frozen_batches) / float(self.num_shards))) |
|
|
|
@property |
|
def n(self): |
|
return self.iterations_in_epoch |
|
|
|
@property |
|
def next_epoch_idx(self): |
|
"""Return the epoch index after *next_epoch_itr* is called.""" |
|
if self._next_epoch_itr is not None: |
|
return self.epoch |
|
elif self._cur_epoch_itr is not None and self.end_of_epoch(): |
|
return self.epoch + 1 |
|
else: |
|
return self.epoch |
|
|
|
def next_epoch_itr( |
|
self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True |
|
): |
|
"""Return a new iterator over the dataset. |
|
|
|
Args: |
|
shuffle (bool, optional): shuffle batches before returning the |
|
iterator (default: True). |
|
fix_batches_to_gpus (bool, optional): ensure that batches are always |
|
allocated to the same shards across epochs. Requires |
|
that :attr:`dataset` supports prefetching (default: False). |
|
set_dataset_epoch (bool, optional): update the wrapped Dataset with |
|
the new epoch number (default: True). |
|
""" |
|
if self.disable_shuffling: |
|
shuffle = False |
|
prev_epoch = self.epoch |
|
self.epoch = self.next_epoch_idx |
|
if set_dataset_epoch and hasattr(self.dataset, "set_epoch"): |
|
self.dataset.set_epoch(self.epoch) |
|
if self._next_epoch_itr is not None: |
|
self._cur_epoch_itr = self._next_epoch_itr |
|
self._next_epoch_itr = None |
|
else: |
|
if callable(self.batch_sampler) and prev_epoch != self.epoch: |
|
|
|
self._frozen_batches = None |
|
self._cur_epoch_itr = self._get_iterator_for_epoch( |
|
self.epoch, |
|
shuffle, |
|
fix_batches_to_gpus=fix_batches_to_gpus, |
|
) |
|
self.shuffle = shuffle |
|
return self._cur_epoch_itr |
|
|
|
def end_of_epoch(self) -> bool: |
|
"""Returns whether the most recent epoch iterator has been exhausted""" |
|
return not self._cur_epoch_itr.has_next() |
|
|
|
@property |
|
def iterations_in_epoch(self): |
|
"""The number of consumed batches in the current epoch.""" |
|
if self._cur_epoch_itr is not None: |
|
return self._cur_epoch_itr.n |
|
elif self._next_epoch_itr is not None: |
|
return self._next_epoch_itr.n |
|
return 0 |
|
|
|
def state_dict(self): |
|
"""Returns a dictionary containing a whole state of the iterator.""" |
|
if self.end_of_epoch(): |
|
epoch = self.epoch + 1 |
|
iter_in_epoch = 0 |
|
else: |
|
epoch = self.epoch |
|
iter_in_epoch = self.iterations_in_epoch |
|
return { |
|
"version": 2, |
|
"epoch": epoch, |
|
"iterations_in_epoch": iter_in_epoch, |
|
"shuffle": self.shuffle, |
|
} |
|
|
|
def load_state_dict(self, state_dict): |
|
"""Copies the state of the iterator from the given *state_dict*.""" |
|
self.epoch = state_dict["epoch"] |
|
itr_pos = state_dict.get("iterations_in_epoch", 0) |
|
version = state_dict.get("version", 1) |
|
if itr_pos > 0: |
|
|
|
self._next_epoch_itr = self._get_iterator_for_epoch( |
|
self.epoch, |
|
shuffle=state_dict.get("shuffle", True), |
|
offset=itr_pos, |
|
) |
|
if self._next_epoch_itr is None: |
|
if version == 1: |
|
|
|
self.epoch += 1 |
|
else: |
|
raise RuntimeError( |
|
"Cannot resume training due to dataloader mismatch, please " |
|
"report this to the fairseq developers. You can relaunch " |
|
"training with `--reset-dataloader` and it should work." |
|
) |
|
else: |
|
self._next_epoch_itr = None |
|
|
|
def _get_iterator_for_epoch( |
|
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 |
|
): |
|
if self.reuse_dataloader and self.dataloader is not None: |
|
self.epoch_batch_sampler.make_batches_for_epoch(epoch, offset) |
|
itr = self.dataloader |
|
else: |
|
self.epoch_batch_sampler = FrozenBatchSampler( |
|
self.ordered_batches, |
|
epoch, |
|
fix_batches_to_gpus, |
|
shuffle, |
|
initial_offset=offset, |
|
) |
|
|
|
if offset > 0 and len(self.epoch_batch_sampler) == 0: |
|
return None |
|
|
|
if self.num_workers > 0: |
|
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" |
|
|
|
|
|
itr = torch.utils.data.DataLoader( |
|
self.dataset, |
|
collate_fn=self.collate_fn, |
|
batch_sampler=self.epoch_batch_sampler, |
|
num_workers=self.num_workers, |
|
timeout=self.timeout, |
|
pin_memory=True, |
|
persistent_workers=self.persistent_workers, |
|
) |
|
|
|
if self.reuse_dataloader: |
|
self.dataloader = itr |
|
|
|
|
|
if self.buffer_size > 0: |
|
itr = BufferedIterator(self.buffer_size, itr) |
|
|
|
|
|
itr = CountingIterator(itr, start=offset) |
|
|
|
if self.skip_remainder_batch: |
|
|
|
|
|
|
|
total_num_itrs = len(self.epoch_batch_sampler) - 1 |
|
itr.take(total_num_itrs) |
|
logger.info(f"skip final residual batch, total_num_itrs = {total_num_itrs}") |
|
|
|
return itr |
|
|
|
def ordered_batches(self, epoch, fix_batches_to_gpus, shuffle): |
|
def shuffle_batches(batches, seed): |
|
with data_utils.numpy_seed(seed): |
|
|
|
if self.grouped_shuffling: |
|
grouped_batches = [ |
|
batches[(i * self.num_shards) : ((i + 1) * self.num_shards)] |
|
for i in range((len(batches) // self.num_shards)) |
|
] |
|
np.random.shuffle(grouped_batches) |
|
batches = list(itertools.chain(*grouped_batches)) |
|
else: |
|
np.random.shuffle(batches) |
|
|
|
return batches |
|
|
|
if self._supports_prefetch: |
|
batches = self.frozen_batches |
|
|
|
if shuffle and not fix_batches_to_gpus: |
|
batches = shuffle_batches(list(batches), self.seed + epoch) |
|
|
|
batches = list( |
|
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) |
|
) |
|
self.dataset.prefetch([i for s in batches for i in s]) |
|
|
|
if shuffle and fix_batches_to_gpus: |
|
batches = shuffle_batches(batches, self.seed + epoch + self.shard_id) |
|
else: |
|
if shuffle: |
|
batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch) |
|
else: |
|
batches = self.frozen_batches |
|
batches = list( |
|
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) |
|
) |
|
return batches |
|
|
|
|
|
class GroupedIterator(CountingIterator): |
|
"""Wrapper around an iterable that returns groups (chunks) of items. |
|
|
|
Args: |
|
iterable (iterable): iterable to wrap |
|
chunk_size (int): size of each chunk |
|
skip_remainder_batch (bool, optional): if set, discard the last grouped batch in |
|
each training epoch, as the last grouped batch is usually smaller than |
|
local_batch_size * distributed_word_size * chunk_size (default: ``False``). |
|
Attributes: |
|
n (int): number of elements consumed from this iterator |
|
""" |
|
|
|
def __init__(self, iterable, chunk_size, skip_remainder_batch=False): |
|
if skip_remainder_batch: |
|
total_num_itrs = int(math.floor(len(iterable) / float(chunk_size))) |
|
logger.info( |
|
f"skip final residual batch, grouped total_num_itrs = {total_num_itrs}" |
|
) |
|
else: |
|
total_num_itrs = int(math.ceil(len(iterable) / float(chunk_size))) |
|
logger.info(f"grouped total_num_itrs = {total_num_itrs}") |
|
|
|
itr = _chunk_iterator(iterable, chunk_size, skip_remainder_batch) |
|
super().__init__( |
|
itr, |
|
start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))), |
|
total=total_num_itrs, |
|
) |
|
self.chunk_size = chunk_size |
|
|
|
if skip_remainder_batch: |
|
self.take(total_num_itrs) |
|
|
|
|
|
|
|
iterable.take(total_num_itrs * chunk_size) |
|
|
|
|
|
def _chunk_iterator(itr, chunk_size, skip_remainder_batch=False): |
|
chunk = [] |
|
for x in itr: |
|
chunk.append(x) |
|
if len(chunk) == chunk_size: |
|
yield chunk |
|
chunk = [] |
|
if not skip_remainder_batch and len(chunk) > 0: |
|
yield chunk |
|
|
|
|
|
class ShardedIterator(CountingIterator): |
|
"""A sharded wrapper around an iterable, padded to length. |
|
|
|
Args: |
|
iterable (iterable): iterable to wrap |
|
num_shards (int): number of shards to split the iterable into |
|
shard_id (int): which shard to iterator over |
|
fill_value (Any, optional): padding value when the iterable doesn't |
|
evenly divide *num_shards* (default: None). |
|
|
|
Attributes: |
|
n (int): number of elements consumed from this iterator |
|
""" |
|
|
|
def __init__( |
|
self, iterable, num_shards, shard_id, fill_value=None, skip_remainder_batch=None |
|
): |
|
""" |
|
Args: |
|
skip_remainder_batch: ignored""" |
|
if shard_id < 0 or shard_id >= num_shards: |
|
raise ValueError("shard_id must be between 0 and num_shards") |
|
sharded_len = int(math.ceil(len(iterable) / float(num_shards))) |
|
itr = map( |
|
operator.itemgetter(1), |
|
itertools.zip_longest( |
|
range(sharded_len), |
|
itertools.islice(iterable, shard_id, len(iterable), num_shards), |
|
fillvalue=fill_value, |
|
), |
|
) |
|
super().__init__( |
|
itr, |
|
start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))), |
|
total=sharded_len, |
|
) |
|
|
|
|
|
class BackgroundConsumer(Thread): |
|
def __init__(self, queue, source, max_len, cuda_device): |
|
Thread.__init__(self) |
|
|
|
self._queue = queue |
|
self._source = source |
|
self._max_len = max_len |
|
self.count = 0 |
|
self.cuda_device = cuda_device |
|
|
|
def run(self): |
|
|
|
if self.cuda_device is not None: |
|
torch.cuda.set_device(self.cuda_device) |
|
|
|
try: |
|
for item in self._source: |
|
self._queue.put(item) |
|
|
|
|
|
self.count += 1 |
|
if self._max_len is not None and self.count >= self._max_len: |
|
break |
|
|
|
|
|
self._queue.put(_sentinel) |
|
except Exception as e: |
|
self._queue.put(e) |
|
|
|
|
|
class BufferedIterator(object): |
|
def __init__(self, size, iterable): |
|
self._queue = queue.Queue(size) |
|
self._iterable = iterable |
|
self._consumer = None |
|
|
|
self.start_time = time.time() |
|
self.warning_time = None |
|
|
|
self.total = len(iterable) |
|
|
|
def _create_consumer(self): |
|
self._consumer = BackgroundConsumer( |
|
self._queue, |
|
self._iterable, |
|
self.total, |
|
torch.cuda.current_device() if torch.cuda.is_available() else None, |
|
) |
|
self._consumer.daemon = True |
|
self._consumer.start() |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __len__(self): |
|
return self.total |
|
|
|
def take(self, n): |
|
self.total = min(self.total, n) |
|
|
|
if hasattr(self._iterable, "take"): |
|
self._iterable.take(n) |
|
return self |
|
|
|
def __next__(self): |
|
|
|
if self._consumer is None: |
|
self._create_consumer() |
|
|
|
|
|
if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)): |
|
if time.time() - self.start_time > 5 * 60: |
|
if ( |
|
self.warning_time is None |
|
or time.time() - self.warning_time > 15 * 60 |
|
): |
|
logger.debug( |
|
"Data loading buffer is empty or nearly empty. This may " |
|
"indicate a data loading bottleneck, and increasing the " |
|
"number of workers (--num-workers) may help." |
|
) |
|
self.warning_time = time.time() |
|
|
|
|
|
item = self._queue.get(True) |
|
if isinstance(item, Exception): |
|
raise item |
|
if item is _sentinel: |
|
raise StopIteration() |
|
return item |
|
|
|
|
|
class GroupedEpochBatchIterator(EpochBatchIterator): |
|
"""Grouped version of EpochBatchIterator |
|
It takes several samplers from different datasets. |
|
Each epoch shuffle the dataset wise sampler individually with different |
|
random seed. The those sub samplers are combined with into |
|
one big samplers with deterministic permutation to mix batches from |
|
different datasets. It will act like EpochBatchIterator but make sure |
|
1) data from one data set each time |
|
2) for different workers, they use the same order to fetch the data |
|
so they will use data from the same dataset everytime |
|
mult_rate is used for update_freq > 1 case where we want to make sure update_freq |
|
mini-batches come from same source |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
collate_fn, |
|
batch_samplers, |
|
seed=1, |
|
num_shards=1, |
|
shard_id=0, |
|
num_workers=0, |
|
epoch=0, |
|
mult_rate=1, |
|
buffer_size=0, |
|
skip_remainder_batch=False, |
|
reuse_dataloader=False, |
|
persistent_workers=False, |
|
): |
|
super().__init__( |
|
dataset, |
|
collate_fn, |
|
batch_samplers, |
|
seed, |
|
num_shards, |
|
shard_id, |
|
num_workers, |
|
epoch, |
|
buffer_size, |
|
skip_remainder_batch=skip_remainder_batch, |
|
reuse_dataloader=reuse_dataloader, |
|
persistent_workers=persistent_workers, |
|
) |
|
|
|
self._frozen_batches = tuple([tuple(sub_batch) for sub_batch in batch_samplers]) |
|
self.step_size = mult_rate * num_shards |
|
|
|
self.lengths = [ |
|
(len(x) // self.step_size) * self.step_size for x in self.frozen_batches |
|
] |
|
|
|
def __len__(self): |
|
return sum(self.lengths) |
|
|
|
@property |
|
def first_batch(self): |
|
if len(self.frozen_batches) == 0: |
|
raise Exception( |
|
"The dataset is empty. This could indicate " |
|
"that all elements in the dataset have been skipped. " |
|
"Try increasing the max number of allowed tokens or using " |
|
"a larger dataset." |
|
) |
|
|
|
if self.dataset.supports_fetch_outside_dataloader: |
|
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0][0]]) |
|
else: |
|
return "DUMMY" |
|
|
|
def _get_iterator_for_epoch( |
|
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 |
|
): |
|
def shuffle_batches(batches, seed): |
|
with data_utils.numpy_seed(seed): |
|
np.random.shuffle(batches) |
|
return batches |
|
|
|
def return_full_batches(batch_sets, seed, shuffle): |
|
if shuffle: |
|
batch_sets = [shuffle_batches(list(x), seed) for x in batch_sets] |
|
|
|
batch_sets = [ |
|
batch_sets[i][: self.lengths[i]] for i in range(len(batch_sets)) |
|
] |
|
batches = list(itertools.chain.from_iterable(batch_sets)) |
|
|
|
if shuffle: |
|
with data_utils.numpy_seed(seed): |
|
idx = np.random.permutation(len(batches) // self.step_size) |
|
if len(idx) * self.step_size != len(batches): |
|
raise ValueError( |
|
"ERROR: %d %d %d %d" |
|
% (len(idx), self.step_size, len(batches), self.shard_id), |
|
":".join(["%d" % x for x in self.lengths]), |
|
) |
|
mini_shards = [ |
|
batches[i * self.step_size : (i + 1) * self.step_size] |
|
for i in idx |
|
] |
|
batches = list(itertools.chain.from_iterable(mini_shards)) |
|
|
|
return batches |
|
|
|
if self._supports_prefetch: |
|
raise NotImplementedError("To be implemented") |
|
else: |
|
batches = return_full_batches( |
|
self.frozen_batches, self.seed + epoch, shuffle |
|
) |
|
batches = list( |
|
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) |
|
) |
|
|
|
if offset > 0 and offset >= len(batches): |
|
return None |
|
|
|
if self.num_workers > 0: |
|
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" |
|
|
|
itr = torch.utils.data.DataLoader( |
|
self.dataset, |
|
collate_fn=self.collate_fn, |
|
batch_sampler=batches[offset:], |
|
num_workers=self.num_workers, |
|
persistent_workers=self.persistent_workers, |
|
) |
|
if self.buffer_size > 0: |
|
itr = BufferedIterator(self.buffer_size, itr) |
|
|
|
return CountingIterator(itr, start=offset) |
|
|