TomatoCocotree
上传
6a62ffb
raw
history blame
18.3 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import shutil
import struct
from functools import lru_cache
import numpy as np
import torch
from fairseq.dataclass.constants import DATASET_IMPL_CHOICES
from fairseq.data.fasta_dataset import FastaDataset
from fairseq.file_io import PathManager
from fairseq.data.huffman import HuffmanMMapIndexedDataset, HuffmanMMapIndex
from . import FairseqDataset
from typing import Union
def best_fitting_int_dtype(
max_int_to_represent,
) -> Union[np.uint16, np.uint32, np.int64]:
if max_int_to_represent is None:
return np.uint32 # Safe guess
elif max_int_to_represent < 65500:
return np.uint16
elif max_int_to_represent < 4294967295:
return np.uint32
else:
return np.int64
# we avoid np.uint64 because it doesn't save space and its type promotion behaves unexpectedly
# https://github.com/numpy/numpy/issues/5745
def get_available_dataset_impl():
return list(map(str, DATASET_IMPL_CHOICES))
def infer_dataset_impl(path):
if IndexedRawTextDataset.exists(path):
return "raw"
elif IndexedDataset.exists(path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
if magic == IndexedDataset._HDR_MAGIC:
return "cached"
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
return "mmap"
elif magic == HuffmanMMapIndex._HDR_MAGIC[:8]:
return "huffman"
else:
return None
elif FastaDataset.exists(path):
return "fasta"
else:
return None
def make_builder(out_file, impl, vocab_size=None):
if impl == "mmap":
return MMapIndexedDatasetBuilder(
out_file, dtype=best_fitting_int_dtype(vocab_size)
)
elif impl == "fasta":
raise NotImplementedError
elif impl == "huffman":
raise ValueError(
"Use HuffmanCodeBuilder directly as it has a different interface."
)
else:
return IndexedDatasetBuilder(out_file)
def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None):
if impl == "raw" and IndexedRawTextDataset.exists(path):
assert dictionary is not None
return IndexedRawTextDataset(path, dictionary)
elif impl == "lazy" and IndexedDataset.exists(path):
return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "cached" and IndexedDataset.exists(path):
return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "mmap" and MMapIndexedDataset.exists(path):
return MMapIndexedDataset(path)
elif impl == "fasta" and FastaDataset.exists(path):
from fairseq.data.fasta_dataset import EncodedFastaDataset
return EncodedFastaDataset(path, dictionary)
elif impl == "huffman" and HuffmanMMapIndexedDataset.exists(path):
return HuffmanMMapIndexedDataset(path)
return None
def dataset_exists(path, impl):
if impl == "raw":
return IndexedRawTextDataset.exists(path)
elif impl == "mmap":
return MMapIndexedDataset.exists(path)
elif impl == "huffman":
return HuffmanMMapIndexedDataset.exists(path)
else:
return IndexedDataset.exists(path)
def read_longs(f, n):
a = np.empty(n, dtype=np.int64)
f.readinto(a)
return a
def write_longs(f, a):
f.write(np.array(a, dtype=np.int64))
_code_to_dtype = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: np.float64,
7: np.double,
8: np.uint16,
9: np.uint32,
10: np.uint64,
}
def _dtype_header_code(dtype) -> int:
for k in _code_to_dtype.keys():
if _code_to_dtype[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class IndexedDataset(FairseqDataset):
"""Loader for TorchNet IndexedDataset"""
_HDR_MAGIC = b"TNTIDX\x00\x00"
def __init__(self, path, fix_lua_indexing=False):
super().__init__()
self.path = path
self.fix_lua_indexing = fix_lua_indexing
self.data_file = None
self.read_index(path)
def read_index(self, path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
assert magic == self._HDR_MAGIC, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = f.read(8)
assert struct.unpack("<Q", version) == (1,)
code, self.element_size = struct.unpack("<QQ", f.read(16))
self.dtype = _code_to_dtype[code]
self._len, self.s = struct.unpack("<QQ", f.read(16))
self.dim_offsets = read_longs(f, self._len + 1)
self.data_offsets = read_longs(f, self._len + 1)
self.sizes = read_longs(f, self.s)
def read_data(self, path):
self.data_file = open(data_file_path(path), "rb", buffering=0)
def check_index(self, i):
if i < 0 or i >= self._len:
raise IndexError("index out of range")
def __del__(self):
if self.data_file:
self.data_file.close()
@lru_cache(maxsize=8)
def __getitem__(self, i) -> torch.Tensor:
if not self.data_file:
self.read_data(self.path)
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
def __len__(self):
return self._len
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
@property
def supports_prefetch(self):
return False # avoid prefetching to save memory
class IndexedCachedDataset(IndexedDataset):
def __init__(self, path, fix_lua_indexing=False):
super().__init__(path, fix_lua_indexing=fix_lua_indexing)
self.cache = None
self.cache_index = {}
@property
def supports_prefetch(self):
return True
def prefetch(self, indices):
if all(i in self.cache_index for i in indices):
return
if not self.data_file:
self.read_data(self.path)
indices = sorted(set(indices))
total_size = 0
for i in indices:
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
self.cache = np.empty(total_size, dtype=self.dtype)
ptx = 0
self.cache_index.clear()
for i in indices:
self.cache_index[i] = ptx
size = self.data_offsets[i + 1] - self.data_offsets[i]
a = self.cache[ptx : ptx + size]
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
ptx += size
if self.data_file:
# close and delete data file after prefetch so we can pickle
self.data_file.close()
self.data_file = None
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
ptx = self.cache_index[i]
np.copyto(a, self.cache[ptx : ptx + a.size])
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
class IndexedRawTextDataset(FairseqDataset):
"""Takes a text file as input and binarizes it in memory at instantiation.
Original lines are also kept in memory"""
def __init__(self, path, dictionary, append_eos=True, reverse_order=False):
self.tokens_list = []
self.lines = []
self.sizes = []
self.append_eos = append_eos
self.reverse_order = reverse_order
self.read_data(path, dictionary)
self.size = len(self.tokens_list)
def read_data(self, path, dictionary):
with open(path, "r", encoding="utf-8") as f:
for line in f:
self.lines.append(line.strip("\n"))
tokens = dictionary.encode_line(
line,
add_if_not_exist=False,
append_eos=self.append_eos,
reverse_order=self.reverse_order,
).long()
self.tokens_list.append(tokens)
self.sizes.append(len(tokens))
self.sizes = np.array(self.sizes)
def check_index(self, i):
if i < 0 or i >= self.size:
raise IndexError("index out of range")
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
return self.tokens_list[i]
def get_original_text(self, i):
self.check_index(i)
return self.lines[i]
def __del__(self):
pass
def __len__(self):
return self.size
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(path)
class IndexedDatasetBuilder:
element_sizes = {
np.uint8: 1,
np.int8: 1,
np.int16: 2,
np.int32: 4,
np.int64: 8,
np.float64: 4,
np.double: 8,
}
def __init__(self, out_file, dtype=np.int32):
self.out_file = open(out_file, "wb")
self.dtype = dtype
self.data_offsets = [0]
self.dim_offsets = [0]
self.sizes = []
self.element_size = self.element_sizes[self.dtype]
def add_item(self, tensor):
# +1 for Lua compatibility
bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype))
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
for s in tensor.size():
self.sizes.append(s)
self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))
def merge_file_(self, another_file):
index = IndexedDataset(another_file)
assert index.dtype == self.dtype
begin = self.data_offsets[-1]
for offset in index.data_offsets[1:]:
self.data_offsets.append(begin + offset)
self.sizes.extend(index.sizes)
begin = self.dim_offsets[-1]
for dim_offset in index.dim_offsets[1:]:
self.dim_offsets.append(begin + dim_offset)
with open(data_file_path(another_file), "rb") as f:
while True:
data = f.read(1024)
if data:
self.out_file.write(data)
else:
break
def finalize(self, index_file):
self.out_file.close()
index = open(index_file, "wb")
index.write(b"TNTIDX\x00\x00")
index.write(struct.pack("<Q", 1))
index.write(
struct.pack("<QQ", _dtype_header_code(self.dtype), self.element_size)
)
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
write_longs(index, self.dim_offsets)
write_longs(index, self.data_offsets)
write_longs(index, self.sizes)
index.close()
def _warmup_mmap_file(path):
with open(path, "rb") as stream:
while stream.read(100 * 1024 * 1024):
pass
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index:
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer:
def __enter__(self):
self._file = open(path, "wb")
self._file.write(cls._HDR_MAGIC)
self._file.write(struct.pack("<Q", 1))
self._file.write(struct.pack("<B", _dtype_header_code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes):
pointers = self._get_pointers(sizes)
self._file.write(struct.pack("<Q", len(sizes)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = _code_to_dtype[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path):
self._path = path
self._index = self.Index(index_file_path(self._path))
_warmup_mmap_file(data_file_path(self._path))
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
@lru_cache(maxsize=8)
def __getitem__(self, i):
ptr, size = self._index[i]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
if self._index.dtype != np.int64:
np_array = np_array.astype(np.int64)
return torch.from_numpy(np_array)
@property
def sizes(self):
return self._index.sizes
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
def get_indexed_dataset_to_local(path) -> str:
local_index_path = PathManager.get_local_path(index_file_path(path))
local_data_path = PathManager.get_local_path(data_file_path(path))
assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), (
"PathManager.get_local_path does not return files with expected patterns: "
f"{local_index_path} and {local_data_path}"
)
local_path = local_data_path[:-4] # stripping surfix ".bin"
assert local_path == local_index_path[:-4] # stripping surfix ".idx"
return local_path
class MMapIndexedDatasetBuilder:
def __init__(self, out_file, dtype=np.int64):
self._data_file = open(out_file, "wb")
self._dtype = dtype
self._sizes = []
def add_item(self, tensor):
np_array = np.array(tensor.numpy(), dtype=self._dtype)
self._data_file.write(np_array.tobytes(order="C"))
self._sizes.append(np_array.size)
def merge_file_(self, another_file):
# Concatenate index
index = MMapIndexedDataset.Index(index_file_path(another_file))
assert index.dtype == self._dtype
for size in index.sizes:
self._sizes.append(size)
# Concatenate data
with open(data_file_path(another_file), "rb") as f:
shutil.copyfileobj(f, self._data_file)
def finalize(self, index_file):
self._data_file.close()
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
index.write(self._sizes)