Spaces:
Running
Running
import os #, yaml, platform, traceback | |
from vouchervision.LeafMachine2_Config_Builder import get_default_download_folder #, write_config_file | |
# from vouchervision.general_utils import validate_dir, print_main_fail | |
# from vouchervision.vouchervision_main import voucher_vision | |
from vouchervision.general_utils import get_cfg_from_full_path | |
def build_VV_config(loaded_cfg=None): | |
if loaded_cfg is None: | |
############################################# | |
############ Set common defaults ############ | |
############################################# | |
# Changing the values below will set new | |
# default values each time you open the | |
# VoucherVision user interface | |
############################################# | |
############################################# | |
############################################# | |
dir_home = os.path.dirname(os.path.dirname(__file__)) | |
run_name = 'test' | |
# dir_images_local = 'D:/Dropbox/LM2_Env/Image_Datasets/GBIF_BroadSample_3SppPerFamily1' | |
dir_images_local = os.path.join(dir_home,'demo','demo_images') | |
# The default output location is the computer's "Downloads" folder | |
# You can set dir_output directly by typing the folder path, | |
# OR you can uncomment the line "dir_output = default_output_folder" | |
# to have VoucherVision save to the Downloads folder by default | |
default_output_folder = get_default_download_folder() | |
dir_output = default_output_folder | |
# dir_output = 'D:/D_Desktop/LM2' | |
prefix_removal = '' #'MICH-V-' | |
suffix_removal = '' | |
catalog_numerical_only = False | |
save_cropped_annotations = ['label','barcode'] | |
do_use_trOCR = False | |
trOCR_model_path = "microsoft/trocr-large-handwritten" | |
OCR_option = 'hand' | |
OCR_option_llava = 'llava-v1.6-mistral-7b' # "llava-v1.6-mistral-7b", "llava-v1.6-34b", "llava-v1.6-vicuna-13b", "llava-v1.6-vicuna-7b", | |
OCR_option_llava_bit = 'full' # full or 4bit | |
double_OCR = False | |
tool_GEO = True | |
tool_WFO = True | |
tool_wikipedia = True | |
check_for_illegal_filenames = False | |
LLM_version_user = 'Azure GPT 3.5 Turbo' #'Azure GPT 4 Turbo 1106-preview' | |
prompt_version = 'SLTPvA_long.yaml' # from ["Version 1", "Version 1 No Domain Knowledge", "Version 2"] | |
use_LeafMachine2_collage_images = True # Use LeafMachine2 collage images | |
do_create_OCR_helper_image = True | |
batch_size = 500 | |
num_workers = 8 | |
skip_vertical = False | |
pdf_conversion_dpi = 100 | |
path_domain_knowledge = '' #os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx') | |
embeddings_database_name = '' #os.path.splitext(os.path.basename(path_domain_knowledge))[0] | |
############################################# | |
############################################# | |
########## DO NOT EDIT BELOW HERE ########### | |
############################################# | |
############################################# | |
return assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers, | |
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
prompt_version, do_create_OCR_helper_image, do_use_trOCR, trOCR_model_path, OCR_option, OCR_option_llava, | |
OCR_option_llava_bit, double_OCR, save_cropped_annotations, | |
tool_GEO, tool_WFO, tool_wikipedia, | |
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False) | |
else: | |
dir_home = os.path.dirname(os.path.dirname(__file__)) | |
run_name = loaded_cfg['leafmachine']['project']['run_name'] | |
dir_images_local = loaded_cfg['leafmachine']['project']['dir_images_local'] | |
default_output_folder = loaded_cfg['leafmachine']['project']['dir_output'] | |
dir_output = loaded_cfg['leafmachine']['project']['dir_output'] | |
prefix_removal = loaded_cfg['leafmachine']['project']['prefix_removal'] | |
suffix_removal = loaded_cfg['leafmachine']['project']['suffix_removal'] | |
catalog_numerical_only = loaded_cfg['leafmachine']['project']['catalog_numerical_only'] | |
do_use_trOCR = loaded_cfg['leafmachine']['project']['do_use_trOCR'] | |
trOCR_model_path = loaded_cfg['leafmachine']['project']['trOCR_model_path'] | |
OCR_option = loaded_cfg['leafmachine']['project']['OCR_option'] | |
OCR_option_llava = loaded_cfg['leafmachine']['project']['OCR_option_llava'] | |
OCR_option_llava_bit = loaded_cfg['leafmachine']['project']['OCR_option_llava_bit'] | |
double_OCR = loaded_cfg['leafmachine']['project']['double_OCR'] | |
tool_GEO = loaded_cfg['leafmachine']['project']['tool_GEO'] | |
tool_WFO = loaded_cfg['leafmachine']['project']['tool_WFO'] | |
tool_wikipedia = loaded_cfg['leafmachine']['project']['tool_wikipedia'] | |
pdf_conversion_dpi = loaded_cfg['leafmachine']['project']['pdf_conversion_dpi'] | |
LLM_version_user = loaded_cfg['leafmachine']['LLM_version'] | |
prompt_version = loaded_cfg['leafmachine']['project']['prompt_version'] | |
use_LeafMachine2_collage_images = loaded_cfg['leafmachine']['use_RGB_label_images'] | |
do_create_OCR_helper_image = loaded_cfg['leafmachine']['do_create_OCR_helper_image'] | |
batch_size = loaded_cfg['leafmachine']['project']['batch_size'] | |
num_workers = loaded_cfg['leafmachine']['project']['num_workers'] | |
path_domain_knowledge = loaded_cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx'] | |
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0] | |
save_cropped_annotations = loaded_cfg['leafmachine']['cropped_components']['save_cropped_annotations'] | |
check_for_illegal_filenames = loaded_cfg['leafmachine']['do']['check_for_illegal_filenames'] | |
skip_vertical = loaded_cfg['leafmachine']['do']['skip_vertical'] | |
return assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers, | |
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
prompt_version, do_create_OCR_helper_image, do_use_trOCR, trOCR_model_path, OCR_option, OCR_option_llava, | |
OCR_option_llava_bit, double_OCR, save_cropped_annotations, | |
tool_GEO, tool_WFO, tool_wikipedia, | |
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False) | |
def assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers, | |
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
prompt_version, do_create_OCR_helper_image_user, do_use_trOCR, trOCR_model_path, OCR_option, OCR_option_llava, | |
OCR_option_llava_bit, double_OCR, save_cropped_annotations, | |
tool_GEO, tool_WFO, tool_wikipedia, | |
check_for_illegal_filenames, skip_vertical, pdf_conversion_dpi, use_domain_knowledge=False): | |
# Initialize the base structure | |
config_data = { | |
'leafmachine': {} | |
} | |
# Modular sections to be added to 'leafmachine' | |
do_section = { | |
'check_for_illegal_filenames': check_for_illegal_filenames, | |
'check_for_corrupt_images_make_vertical': True, | |
'skip_vertical': skip_vertical, | |
} | |
print_section = { | |
'verbose': True, | |
'optional_warnings': True | |
} | |
logging_section = { | |
'log_level': None | |
} | |
project_section = { | |
'dir_output': dir_output, | |
'run_name': run_name, | |
'image_location': 'local', | |
'batch_size': batch_size, | |
'num_workers': num_workers, | |
'dir_images_local': dir_images_local, | |
'continue_run_from_partial_xlsx': '', | |
'prefix_removal': prefix_removal, | |
'suffix_removal': suffix_removal, | |
'catalog_numerical_only': catalog_numerical_only, | |
'use_domain_knowledge': use_domain_knowledge, | |
'embeddings_database_name': embeddings_database_name, | |
'build_new_embeddings_database': False, | |
'path_to_domain_knowledge_xlsx': path_domain_knowledge, | |
'prompt_version': prompt_version, | |
'delete_all_temps': False, | |
'delete_temps_keep_VVE': False, | |
'do_use_trOCR': do_use_trOCR, | |
'trOCR_model_path': trOCR_model_path, | |
'OCR_option': OCR_option, | |
'OCR_option_llava': OCR_option_llava, | |
'OCR_option_llava_bit': OCR_option_llava_bit, | |
'double_OCR': double_OCR, | |
'pdf_conversion_dpi': pdf_conversion_dpi, | |
'tool_GEO': tool_GEO, | |
'tool_WFO': tool_WFO, | |
'tool_wikipedia': tool_wikipedia, | |
} | |
modules_section = { | |
'specimen_crop': True | |
} | |
LLM_version = LLM_version_user | |
use_RGB_label_images = use_LeafMachine2_collage_images # Use LeafMachine2 collage images | |
do_create_OCR_helper_image = do_create_OCR_helper_image_user | |
cropped_components_section = { | |
'do_save_cropped_annotations': True, | |
'save_cropped_annotations': save_cropped_annotations, | |
'save_per_image': False, | |
'save_per_annotation_class': True, | |
'binarize_labels': False, | |
'binarize_labels_skeletonize': False | |
} | |
data_section = { | |
'save_json_rulers': False, | |
'save_json_measurements': False, | |
'save_individual_csv_files_rulers': False, | |
'save_individual_csv_files_measurements': False, | |
'save_individual_csv_files_landmarks': False, | |
'save_individual_efd_files': False, | |
'include_darwin_core_data_from_combined_file': False, | |
'do_apply_conversion_factor': False | |
} | |
overlay_section = { | |
'save_overlay_to_pdf': False, | |
'save_overlay_to_jpgs': True, | |
'overlay_dpi': 300, # Between 100 to 300 | |
'overlay_background_color': 'black', # Either 'white' or 'black' | |
'show_archival_detections': True, | |
'show_plant_detections': True, | |
'show_segmentations': True, | |
'show_landmarks': True, | |
'ignore_archival_detections_classes': [], | |
'ignore_plant_detections_classes': ['leaf_whole', 'specimen'], # Could also include 'leaf_partial' and others if needed | |
'ignore_landmark_classes': [], | |
'line_width_archival': 12, # Previous value given was 2 | |
'line_width_plant': 12, # Previous value given was 6 | |
'line_width_seg': 12, # 12 is specified as "thick" | |
'line_width_efd': 12, # 3 is specified as "thick" but 12 is given here | |
'alpha_transparency_archival': 0.3, | |
'alpha_transparency_plant': 0, | |
'alpha_transparency_seg_whole_leaf': 0.4, | |
'alpha_transparency_seg_partial_leaf': 0.3 | |
} | |
archival_component_detector_section = { | |
'detector_type': 'Archival_Detector', | |
'detector_version': 'PREP_final', | |
'detector_iteration': 'PREP_final', | |
'detector_weights': 'best.pt', | |
'minimum_confidence_threshold': 0.5, # Default is 0.5 | |
'do_save_prediction_overlay_images': True, | |
'ignore_objects_for_overlay': [] | |
} | |
# Add the sections to the 'leafmachine' key | |
config_data['leafmachine']['do'] = do_section | |
config_data['leafmachine']['print'] = print_section | |
config_data['leafmachine']['logging'] = logging_section | |
config_data['leafmachine']['project'] = project_section | |
config_data['leafmachine']['LLM_version'] = LLM_version | |
config_data['leafmachine']['use_RGB_label_images'] = use_RGB_label_images | |
config_data['leafmachine']['do_create_OCR_helper_image'] = do_create_OCR_helper_image | |
config_data['leafmachine']['cropped_components'] = cropped_components_section | |
config_data['leafmachine']['modules'] = modules_section | |
config_data['leafmachine']['data'] = data_section | |
config_data['leafmachine']['overlay'] = overlay_section | |
config_data['leafmachine']['archival_component_detector'] = archival_component_detector_section | |
return config_data, dir_home | |
# def build_api_tests(api): | |
# dir_home = os.path.dirname(os.path.dirname(__file__)) | |
# path_to_configs = os.path.join(dir_home,'demo','demo_configs') | |
# dir_home = os.path.dirname(os.path.dirname(__file__)) | |
# dir_images_local = os.path.join(dir_home,'demo','demo_images') | |
# validate_dir(os.path.join(dir_home,'demo','demo_configs')) | |
# path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx') | |
# embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0] | |
# prefix_removal = '' | |
# suffix_removal = '' | |
# catalog_numerical_only = False | |
# batch_size = 500 | |
# do_create_OCR_helper_image = False | |
# # ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"] | |
# # LLM_version_user = 'Azure GPT 4' | |
# # ### Option 2: False of [False, True] | |
# # use_LeafMachine2_collage_images = False | |
# # ### Option 3: False of [False, True] | |
# # use_domain_knowledge = True | |
# test_results = {} | |
# if api == 'openai': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options() | |
# elif api == 'palm': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options() | |
# elif api == 'azure_openai': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options() | |
# else: | |
# raise | |
# ind = -1 | |
# ind_opt1 = -1 | |
# ind_opt2 = -1 | |
# ind_opt3 = -1 | |
# for opt1 in OPT1: | |
# ind_opt1+= 1 | |
# for opt2 in OPT2: | |
# ind_opt2 += 1 | |
# for opt3 in OPT3: | |
# ind += 1 | |
# ind_opt3 += 1 | |
# LLM_version_user = opt1 | |
# use_LeafMachine2_collage_images = opt2 | |
# prompt_version = opt3 | |
# filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml" | |
# run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}" | |
# dir_output = os.path.join(dir_home,'demo','demo_output','run_name') | |
# validate_dir(dir_output) | |
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size, | |
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
# prompt_version,do_create_OCR_helper_image) | |
# write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename) | |
# test_results[run_name] = False | |
# ind_opt3 = -1 | |
# ind_opt2 = -1 | |
# ind_opt1 = -1 | |
# return dir_home, path_to_configs, test_results | |
# def build_demo_tests(llm_version): | |
# dir_home = os.path.dirname(os.path.dirname(__file__)) | |
# path_to_configs = os.path.join(dir_home,'demo','demo_configs') | |
# dir_home = os.path.dirname(os.path.dirname(__file__)) | |
# dir_images_local = os.path.join(dir_home,'demo','demo_images') | |
# validate_dir(os.path.join(dir_home,'demo','demo_configs')) | |
# path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx') | |
# embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0] | |
# prefix_removal = '' | |
# suffix_removal = '' | |
# catalog_numerical_only = False | |
# batch_size = 500 | |
# do_create_OCR_helper_image = False | |
# # ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"] | |
# # LLM_version_user = 'Azure GPT 4' | |
# # ### Option 2: False of [False, True] | |
# # use_LeafMachine2_collage_images = False | |
# # ### Option 3: False of [False, True] | |
# # use_domain_knowledge = True | |
# test_results = {} | |
# if llm_version == 'gpt': | |
# OPT1, OPT2, OPT3 = TestOptionsGPT.get_options() | |
# elif llm_version == 'palm': | |
# OPT1, OPT2, OPT3 = TestOptionsPalm.get_options() | |
# else: | |
# raise | |
# ind = -1 | |
# ind_opt1 = -1 | |
# ind_opt2 = -1 | |
# ind_opt3 = -1 | |
# for opt1 in OPT1: | |
# ind_opt1+= 1 | |
# for opt2 in OPT2: | |
# ind_opt2 += 1 | |
# for opt3 in OPT3: | |
# ind += 1 | |
# ind_opt3 += 1 | |
# LLM_version_user = opt1 | |
# use_LeafMachine2_collage_images = opt2 | |
# prompt_version = opt3 | |
# filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml" | |
# run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}" | |
# dir_output = os.path.join(dir_home,'demo','demo_output','run_name') | |
# validate_dir(dir_output) | |
# if llm_version == 'gpt': | |
# if prompt_version in ['Version 1']: | |
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size, | |
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
# prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True) | |
# else: | |
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size, | |
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
# prompt_version, do_create_OCR_helper_image) | |
# elif llm_version == 'palm': | |
# if prompt_version in ['Version 1 PaLM 2']: | |
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size, | |
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
# prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True) | |
# else: | |
# config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output, | |
# prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size, | |
# path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images, | |
# prompt_version, do_create_OCR_helper_image) | |
# write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename) | |
# test_results[run_name] = False | |
# ind_opt3 = -1 | |
# ind_opt2 = -1 | |
# ind_opt1 = -1 | |
# return dir_home, path_to_configs, test_results | |
class TestOptionsGPT: | |
OPT1 = ["gpt-4-1106-preview","GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5"] | |
OPT2 = [False, True] | |
OPT3 = ["Version 1", "Version 1 No Domain Knowledge", "Version 2"] | |
def get_options(cls): | |
return cls.OPT1, cls.OPT2, cls.OPT3 | |
def get_length(cls): | |
return 24 | |
class TestOptionsPalm: | |
OPT1 = ["PaLM 2"] | |
OPT2 = [False, True] | |
OPT3 = ["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"] | |
def get_options(cls): | |
return cls.OPT1, cls.OPT2, cls.OPT3 | |
def get_length(cls): | |
return 6 | |
class TestOptionsAPI_openai: | |
OPT1 = ["GPT 3.5"] | |
OPT2 = [False] | |
OPT3 = ["Version 2"] | |
def get_options(cls): | |
return cls.OPT1, cls.OPT2, cls.OPT3 | |
def get_length(cls): | |
return 24 | |
class TestOptionsAPI_azure_openai: | |
OPT1 = ["Azure GPT 3.5"] | |
OPT2 = [False] | |
OPT3 = ["Version 2"] | |
def get_options(cls): | |
return cls.OPT1, cls.OPT2, cls.OPT3 | |
def get_length(cls): | |
return 24 | |
class TestOptionsAPI_palm: | |
OPT1 = ["PaLM 2"] | |
OPT2 = [False] | |
OPT3 = ["Version 2 PaLM 2"] | |
def get_options(cls): | |
return cls.OPT1, cls.OPT2, cls.OPT3 | |
def get_length(cls): | |
return 6 | |
# def run_demo_tests_GPT(progress_report): | |
# dir_home, path_to_configs, test_results = build_demo_tests('gpt') | |
# progress_report.set_n_overall(len(test_results.items())) | |
# JSON_results = {} | |
# for ind, (cfg, result) in enumerate(test_results.items()): | |
# OPT1, OPT2, OPT3 = TestOptionsGPT.get_options() | |
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__') | |
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])] | |
# if opt1_readable in ["Azure GPT 4", "Azure GPT 3.5"]: | |
# api_version = 'gpt-azure' | |
# elif opt1_readable in ["GPT 4", "GPT 3.5"]: | |
# api_version = 'gpt' | |
# else: | |
# raise | |
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images" | |
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}" | |
# # Construct the human-readable test name | |
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}" | |
# get_n_overall = progress_report.get_n_overall() | |
# progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}") | |
# print_main_fail(f"Starting validation test: {human_readable_name}") | |
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml'])) | |
# if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr'): | |
# try: | |
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, progress_report=progress_report, test_ind=int(test_ind)) | |
# test_results[cfg] = True | |
# JSON_results[ind] = last_JSON_response | |
# except Exception as e: | |
# JSON_results[ind] = None | |
# test_results[cfg] = False | |
# print(f"An exception occurred: {e}") | |
# traceback.print_exc() # This will print the full traceback | |
# else: | |
# fail_response = '' | |
# if not check_API_key(dir_home, 'google-vision-ocr'): | |
# fail_response += "No API key found for Google Vision OCR" | |
# if not check_API_key(dir_home, api_version): | |
# fail_response += f" + No API key found for {api_version}" | |
# test_results[cfg] = False | |
# JSON_results[ind] = fail_response | |
# print(f"No API key found for {fail_response}") | |
# return test_results, JSON_results | |
# def run_demo_tests_Palm(progress_report): | |
# api_version = 'palm' | |
# dir_home, path_to_configs, test_results = build_demo_tests('palm') | |
# progress_report.set_n_overall(len(test_results.items())) | |
# JSON_results = {} | |
# for ind, (cfg, result) in enumerate(test_results.items()): | |
# OPT1, OPT2, OPT3 = TestOptionsPalm.get_options() | |
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__') | |
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])] | |
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images" | |
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}" | |
# # opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge" | |
# # Construct the human-readable test name | |
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}" | |
# get_n_overall = progress_report.get_n_overall() | |
# progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}") | |
# print_main_fail(f"Starting validation test: {human_readable_name}") | |
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml'])) | |
# if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr') : | |
# try: | |
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, path_custom_prompts=None, progress_report=progress_report, test_ind=int(test_ind)) | |
# test_results[cfg] = True | |
# JSON_results[ind] = last_JSON_response | |
# except Exception as e: | |
# test_results[cfg] = False | |
# JSON_results[ind] = None | |
# print(f"An exception occurred: {e}") | |
# traceback.print_exc() # This will print the full traceback | |
# else: | |
# fail_response = '' | |
# if not check_API_key(dir_home, 'google-vision-ocr'): | |
# fail_response += "No API key found for Google Vision OCR" | |
# if not check_API_key(dir_home, api_version): | |
# fail_response += f" + No API key found for {api_version}" | |
# test_results[cfg] = False | |
# JSON_results[ind] = fail_response | |
# print(f"No API key found for {fail_response}") | |
# return test_results, JSON_results | |
# def run_api_tests(api): | |
# try: | |
# dir_home, path_to_configs, test_results = build_api_tests(api) | |
# JSON_results = {} | |
# for ind, (cfg, result) in enumerate(test_results.items()): | |
# if api == 'openai': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options() | |
# elif 'azure_openai': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options() | |
# elif 'palm': | |
# OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options() | |
# test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__') | |
# opt1_readable = OPT1[int(ind_opt1.split('-')[1])] | |
# opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images" | |
# opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}" | |
# # opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge" | |
# # Construct the human-readable test name | |
# human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}" | |
# print_main_fail(f"Starting validation test: {human_readable_name}") | |
# cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml'])) | |
# if check_API_key(dir_home, api) and check_API_key(dir_home, 'google-vision-ocr') : | |
# try: | |
# last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, None,path_custom_prompts=None , cfg_test=None, progress_report=None, test_ind=int(test_ind)) | |
# test_results[cfg] = True | |
# JSON_results[ind] = last_JSON_response | |
# return True | |
# except Exception as e: | |
# print(e) | |
# return False | |
# else: | |
# return False | |
# except Exception as e: | |
# print(e) | |
# return False | |
def has_API_key(val): | |
if val != '': | |
return True | |
else: | |
return False | |
def check_if_usable(is_hf): ############################################################################################################## TODO fix | |
if is_hf: | |
return True ########### needs actual logic. borrow from another function to not repeat this | |
else: | |
dir_home = os.path.dirname(os.path.dirname(__file__)) | |
path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml') | |
cfg_private = get_cfg_from_full_path(path_cfg_private) | |
has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY']) | |
has_key_azure_openai = has_API_key(cfg_private['openai_azure']['OPENAI_API_VERSION']) | |
has_key_google_OCR = has_API_key(cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS']) | |
has_key_MISTRAL = has_API_key(cfg_private['mistral']['MISTRAL_API_KEY']) | |
if has_key_google_OCR and (has_key_azure_openai or has_key_openai or has_key_MISTRAL): | |
return True | |
else: | |
return False | |
# def check_API_key(dir_home, api_version): | |
# dir_home = os.path.dirname(os.path.dirname(__file__)) | |
# path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml') | |
# cfg_private = get_cfg_from_full_path(path_cfg_private) | |
# has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY']) | |
# has_key_azure_openai = has_API_key(cfg_private['openai_azure']['api_version']) | |
# # has_key_palm2 = has_API_key(cfg_private['google_palm']['google_palm_api']) | |
# has_key_google_OCR = has_API_key(cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS']) | |
# if api_version in ['gpt','openai'] and has_key_openai: | |
# return True | |
# elif api_version in ['gpt-azure', 'azure_openai'] and has_key_azure_openai: | |
# return True | |
# elif api_version == 'google-vision-ocr' and has_key_google_OCR: | |
# return True | |
# else: | |
# return False | |