Spaces:
Running
Running
import os, io, sys, inspect, statistics, json, cv2 | |
from statistics import mean | |
# from google.cloud import vision, storage | |
from google.cloud import vision | |
from google.cloud import vision_v1p3beta1 as vision_beta | |
from PIL import Image, ImageDraw, ImageFont | |
import colorsys | |
from tqdm import tqdm | |
from google.oauth2 import service_account | |
### LLaVA should only be installed if the user will actually use it. | |
### It requires the most recent pytorch/Python and can mess with older systems | |
''' | |
@misc{li2021trocr, | |
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, | |
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, | |
year={2021}, | |
eprint={2109.10282}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
@inproceedings{baek2019character, | |
title={Character Region Awareness for Text Detection}, | |
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk}, | |
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, | |
pages={9365--9374}, | |
year={2019} | |
} | |
''' | |
class OCREngine: | |
BBOX_COLOR = "black" | |
def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device): | |
self.is_hf = is_hf | |
self.logger = logger | |
self.json_report = json_report | |
self.path = path | |
self.cfg = cfg | |
self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR'] | |
self.OCR_option = self.cfg['leafmachine']['project']['OCR_option'] | |
self.double_OCR = self.cfg['leafmachine']['project']['double_OCR'] | |
self.dir_home = dir_home | |
# Initialize TrOCR components | |
self.trOCR_model_version = trOCR_model_version | |
self.trOCR_processor = trOCR_processor | |
self.trOCR_model = trOCR_model | |
self.device = device | |
self.hand_cleaned_text = None | |
self.hand_organized_text = None | |
self.hand_bounds = None | |
self.hand_bounds_word = None | |
self.hand_bounds_flat = None | |
self.hand_text_to_box_mapping = None | |
self.hand_height = None | |
self.hand_confidences = None | |
self.hand_characters = None | |
self.normal_cleaned_text = None | |
self.normal_organized_text = None | |
self.normal_bounds = None | |
self.normal_bounds_word = None | |
self.normal_text_to_box_mapping = None | |
self.normal_bounds_flat = None | |
self.normal_height = None | |
self.normal_confidences = None | |
self.normal_characters = None | |
self.trOCR_texts = None | |
self.trOCR_text_to_box_mapping = None | |
self.trOCR_bounds_flat = None | |
self.trOCR_height = None | |
self.trOCR_confidences = None | |
self.trOCR_characters = None | |
self.set_client() | |
self.init_craft() | |
self.multimodal_prompt = """I need you to transcribe all of the text in this image. | |
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}""" | |
self.init_llava() | |
def set_client(self): | |
if self.is_hf: | |
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
else: | |
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
def get_google_credentials(self): | |
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS') | |
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str)) | |
return credentials | |
def init_craft(self): | |
if 'CRAFT' in self.OCR_option: | |
from craft_text_detector import load_craftnet_model, load_refinenet_model | |
try: | |
self.refine_net = load_refinenet_model(cuda=True) | |
self.use_cuda = True | |
except: | |
self.refine_net = load_refinenet_model(cuda=False) | |
self.use_cuda = False | |
if self.use_cuda: | |
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True) | |
else: | |
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False) | |
def init_llava(self): | |
if 'LLaVA' in self.OCR_option: | |
from vouchervision.OCR_llava import OCRllava | |
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava'] | |
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit'] | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}') | |
if self.model_quant == '4bit': | |
use_4bit = True | |
elif self.model_quant == 'full': | |
use_4bit = False | |
else: | |
self.logger.info(f"Provided model quantization invlid. Using 4bit.") | |
use_4bit = True | |
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False) | |
def init_gemini_vision(self): | |
pass | |
def init_gpt4_vision(self): | |
pass | |
def detect_text_craft(self): | |
from craft_text_detector import read_image, get_prediction | |
# Perform prediction using CRAFT | |
image = read_image(self.path) | |
link_threshold = 0.85 | |
text_threshold = 0.4 | |
low_text = 0.4 | |
if self.use_cuda: | |
self.prediction_result = get_prediction( | |
image=image, | |
craft_net=self.craft_net, | |
refine_net=self.refine_net, | |
text_threshold=text_threshold, | |
link_threshold=link_threshold, | |
low_text=low_text, | |
cuda=True, | |
long_size=1280 | |
) | |
else: | |
self.prediction_result = get_prediction( | |
image=image, | |
craft_net=self.craft_net, | |
refine_net=self.refine_net, | |
text_threshold=text_threshold, | |
link_threshold=link_threshold, | |
low_text=low_text, | |
cuda=False, | |
long_size=1280 | |
) | |
# Initialize metadata structures | |
bounds = [] | |
bounds_word = [] # CRAFT gives bounds for text regions, not individual words | |
text_to_box_mapping = [] | |
bounds_flat = [] | |
height_flat = [] | |
confidences = [] # CRAFT does not provide confidences per character, so this might be uniformly set or estimated | |
characters = [] # Simulating as CRAFT doesn't provide character-level details | |
organized_text = "" | |
total_b = len(self.prediction_result["boxes"]) | |
i=0 | |
# Process each detected text region | |
for box in self.prediction_result["boxes"]: | |
i+=1 | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}') | |
vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box] | |
# Simulate a mapping for the whole detected region as a word | |
text_to_box_mapping.append({ | |
"vertices": vertices, | |
"text": "detected_text" # Placeholder, as CRAFT does not provide the text content directly | |
}) | |
# Assuming each box is a word for the sake of this example | |
bounds_word.append({"vertices": vertices}) | |
# For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this | |
# Instead, we create a single large 'character' per detected region | |
bounds.append({"vertices": vertices}) | |
# Simulate flat bounds and height for each detected region | |
x_positions = [vertex["x"] for vertex in vertices] | |
y_positions = [vertex["y"] for vertex in vertices] | |
min_x, max_x = min(x_positions), max(x_positions) | |
min_y, max_y = min(y_positions), max(y_positions) | |
avg_height = max_y - min_y | |
height_flat.append(avg_height) | |
# Assuming uniform confidence for all detected regions | |
confidences.append(1.0) # Placeholder confidence | |
# Adding dummy character for each box | |
characters.append("X") # Placeholder character | |
# Organize text as a single string (assuming each box is a word) | |
# organized_text += "detected_text " # Placeholder text | |
# Update class attributes with processed data | |
self.normal_bounds = bounds | |
self.normal_bounds_word = bounds_word | |
self.normal_text_to_box_mapping = text_to_box_mapping | |
self.normal_bounds_flat = bounds_flat # This would be similar to bounds if not processing characters individually | |
self.normal_height = height_flat | |
self.normal_confidences = confidences | |
self.normal_characters = characters | |
self.normal_organized_text = organized_text.strip() | |
def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger): | |
CONFIDENCES = 0.80 | |
MAX_NEW_TOKENS = 50 | |
self.OCR_JSON_to_file = {} | |
ocr_parts = '' | |
if not do_use_trOCR: | |
if 'normal' in self.OCR_option: | |
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}") | |
# ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}" | |
ocr_parts = self.normal_organized_text | |
if 'hand' in self.OCR_option: | |
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}") | |
# ocr_parts = ocr_parts + f"Google_OCR_Handwriting:\n{self.hand_organized_text}" | |
ocr_parts = self.hand_organized_text | |
# if self.OCR_option in ['both',]: | |
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}") | |
# return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}" | |
return ocr_parts | |
else: | |
logger.info(f'Supplementing with trOCR') | |
self.trOCR_texts = [] | |
original_image = Image.open(self.path).convert("RGB") | |
if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option: | |
available_bounds = self.normal_bounds_word | |
elif 'hand' in self.OCR_option: | |
available_bounds = self.hand_bounds_word | |
# elif self.OCR_option in ['both',]: | |
# available_bounds = self.hand_bounds_word | |
else: | |
raise | |
text_to_box_mapping = [] | |
characters = [] | |
height = [] | |
confidences = [] | |
total_b = len(available_bounds) | |
i=0 | |
for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"): | |
i+=1 | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}') | |
vertices = bound["vertices"] | |
left = min([v["x"] for v in vertices]) | |
top = min([v["y"] for v in vertices]) | |
right = max([v["x"] for v in vertices]) | |
bottom = max([v["y"] for v in vertices]) | |
# Crop image based on Google's bounding box | |
cropped_image = original_image.crop((left, top, right, bottom)) | |
pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values | |
# Move pixel values to the appropriate device | |
pixel_values = pixel_values.to(self.device) | |
generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS) | |
extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
self.trOCR_texts.append(extracted_text) | |
# For plotting | |
word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices) | |
num_symbols = len(extracted_text) | |
Yw = max(vertex.get('y') for vertex in vertices) | |
Yo = Yw - min(vertex.get('y') for vertex in vertices) | |
X = word_length / num_symbols if num_symbols > 0 else 0 | |
H = int(X+(Yo*0.1)) | |
height.append(H) | |
map_dict = { | |
"vertices": vertices, | |
"text": extracted_text # Use the text extracted by trOCR | |
} | |
text_to_box_mapping.append(map_dict) | |
characters.append(extracted_text) | |
confidences.append(CONFIDENCES) | |
median_height = statistics.median(height) if height else 0 | |
median_heights = [median_height * 1.5] * len(characters) | |
self.trOCR_texts = ' '.join(self.trOCR_texts) | |
self.trOCR_text_to_box_mapping = text_to_box_mapping | |
self.trOCR_bounds_flat = available_bounds | |
self.trOCR_height = median_heights | |
self.trOCR_confidences = confidences | |
self.trOCR_characters = characters | |
if 'normal' in self.OCR_option: | |
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
ocr_parts = self.trOCR_texts | |
if 'hand' in self.OCR_option: | |
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
ocr_parts = self.trOCR_texts | |
# if self.OCR_option in ['both',]: | |
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
# self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text | |
# self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts | |
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}") | |
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}" | |
if 'CRAFT' in self.OCR_option: | |
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text | |
self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts | |
# logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}") | |
# ocr_parts = ocr_parts + f"\nCRAFT_trOCR:\n{self.trOCR_texts}" | |
ocr_parts = self.trOCR_texts | |
return ocr_parts | |
def confidence_to_color(confidence): | |
hue = (confidence - 0.5) * 120 / 0.5 | |
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1) | |
return (int(r*255), int(g*255), int(b*255)) | |
def render_text_on_black_image(self, option): | |
bounds_flat = getattr(self, f'{option}_bounds_flat', []) | |
heights = getattr(self, f'{option}_height', []) | |
confidences = getattr(self, f'{option}_confidences', []) | |
characters = getattr(self, f'{option}_characters', []) | |
original_image = Image.open(self.path) | |
width, height = original_image.size | |
black_image = Image.new("RGB", (width, height), "black") | |
draw = ImageDraw.Draw(black_image) | |
for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters): | |
font_size = int(char_height) | |
try: | |
font = ImageFont.truetype("arial.ttf", font_size) | |
except: | |
font = ImageFont.load_default().font_variant(size=font_size) | |
if option == 'trOCR': | |
color = (0, 170, 255) | |
else: | |
color = OCREngine.confidence_to_color(confidence) | |
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height) | |
draw.text(position, character, fill=color, font=font) | |
return black_image | |
def merge_images(self, image1, image2): | |
width1, height1 = image1.size | |
width2, height2 = image2.size | |
merged_image = Image.new("RGB", (width1 + width2, max([height1, height2]))) | |
merged_image.paste(image1, (0, 0)) | |
merged_image.paste(image2, (width1, 0)) | |
return merged_image | |
def draw_boxes(self, option): | |
bounds = getattr(self, f'{option}_bounds', []) | |
bounds_word = getattr(self, f'{option}_bounds_word', []) | |
confidences = getattr(self, f'{option}_confidences', []) | |
draw = ImageDraw.Draw(self.image) | |
width, height = self.image.size | |
if min([width, height]) > 4000: | |
line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level | |
line_width_thin = 1 | |
else: | |
line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level | |
line_width_thin = 1 #int((width + height) / 2 * 0.001) | |
for bound in bounds_word: | |
draw.polygon( | |
[ | |
bound["vertices"][0]["x"], bound["vertices"][0]["y"], | |
bound["vertices"][1]["x"], bound["vertices"][1]["y"], | |
bound["vertices"][2]["x"], bound["vertices"][2]["y"], | |
bound["vertices"][3]["x"], bound["vertices"][3]["y"], | |
], | |
outline=OCREngine.BBOX_COLOR, | |
width=line_width_thin | |
) | |
# Draw a line segment at the bottom of each handwritten character | |
for bound, confidence in zip(bounds, confidences): | |
color = OCREngine.confidence_to_color(confidence) | |
# Use the bottom two vertices of the bounding box for the line | |
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick) | |
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick) | |
draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick) | |
return self.image | |
def detect_text(self): | |
with io.open(self.path, 'rb') as image_file: | |
content = image_file.read() | |
image = vision.Image(content=content) | |
response = self.client.document_text_detection(image=image) | |
texts = response.text_annotations | |
if response.error.message: | |
raise Exception( | |
'{}\nFor more info on error messages, check: ' | |
'https://cloud.google.com/apis/design/errors'.format( | |
response.error.message)) | |
bounds = [] | |
bounds_word = [] | |
text_to_box_mapping = [] | |
bounds_flat = [] | |
height_flat = [] | |
confidences = [] | |
characters = [] | |
organized_text = "" | |
paragraph_count = 0 | |
for text in texts[1:]: | |
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices] | |
map_dict = { | |
"vertices": vertices, | |
"text": text.description | |
} | |
text_to_box_mapping.append(map_dict) | |
for page in response.full_text_annotation.pages: | |
for block in page.blocks: | |
# paragraph_count += 1 | |
# organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label | |
for paragraph in block.paragraphs: | |
avg_H_list = [] | |
for word in paragraph.words: | |
Yw = max(vertex.y for vertex in word.bounding_box.vertices) | |
# Calculate the width of the word and divide by the number of symbols | |
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices) | |
num_symbols = len(word.symbols) | |
if num_symbols <= 3: | |
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices)) | |
else: | |
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices) | |
X = word_length / num_symbols if num_symbols > 0 else 0 | |
H = int(X+(Yo*0.1)) | |
avg_H_list.append(H) | |
avg_H = int(mean(avg_H_list)) | |
words_in_para = [] | |
for word in paragraph.words: | |
# Get word-level bounding box | |
bound_word_dict = { | |
"vertices": [ | |
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices | |
] | |
} | |
bounds_word.append(bound_word_dict) | |
Y = max(vertex.y for vertex in word.bounding_box.vertices) | |
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices) | |
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices) | |
num_symbols = len(word.symbols) | |
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0 | |
current_x_position = word_x_start | |
characters_ind = [] | |
for symbol in word.symbols: | |
bound_dict = { | |
"vertices": [ | |
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices | |
] | |
} | |
bounds.append(bound_dict) | |
# Create flat bounds with adjusted x position | |
bounds_flat_dict = { | |
"vertices": [ | |
{"x": current_x_position, "y": Y}, | |
{"x": current_x_position + symbol_width, "y": Y} | |
] | |
} | |
bounds_flat.append(bounds_flat_dict) | |
current_x_position += symbol_width | |
height_flat.append(avg_H) | |
confidences.append(round(symbol.confidence, 4)) | |
characters_ind.append(symbol.text) | |
characters.append(symbol.text) | |
words_in_para.append(''.join(characters_ind)) | |
paragraph_text = ' '.join(words_in_para) # Join words in paragraph | |
organized_text += paragraph_text + ' ' #+ '\n' | |
# median_height = statistics.median(height_flat) if height_flat else 0 | |
# median_heights = [median_height] * len(characters) | |
self.normal_cleaned_text = texts[0].description if texts else '' | |
self.normal_organized_text = organized_text | |
self.normal_bounds = bounds | |
self.normal_bounds_word = bounds_word | |
self.normal_text_to_box_mapping = text_to_box_mapping | |
self.normal_bounds_flat = bounds_flat | |
# self.normal_height = median_heights #height_flat | |
self.normal_height = height_flat | |
self.normal_confidences = confidences | |
self.normal_characters = characters | |
return self.normal_cleaned_text | |
def detect_handwritten_ocr(self): | |
with open(self.path, "rb") as image_file: | |
content = image_file.read() | |
image = vision_beta.Image(content=content) | |
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"]) | |
response = self.client_beta.document_text_detection(image=image, image_context=image_context) | |
texts = response.text_annotations | |
if response.error.message: | |
raise Exception( | |
"{}\nFor more info on error messages, check: " | |
"https://cloud.google.com/apis/design/errors".format(response.error.message) | |
) | |
bounds = [] | |
bounds_word = [] | |
bounds_flat = [] | |
height_flat = [] | |
confidences = [] | |
characters = [] | |
organized_text = "" | |
paragraph_count = 0 | |
text_to_box_mapping = [] | |
for text in texts[1:]: | |
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices] | |
map_dict = { | |
"vertices": vertices, | |
"text": text.description | |
} | |
text_to_box_mapping.append(map_dict) | |
for page in response.full_text_annotation.pages: | |
for block in page.blocks: | |
# paragraph_count += 1 | |
# organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label | |
for paragraph in block.paragraphs: | |
avg_H_list = [] | |
for word in paragraph.words: | |
Yw = max(vertex.y for vertex in word.bounding_box.vertices) | |
# Calculate the width of the word and divide by the number of symbols | |
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices) | |
num_symbols = len(word.symbols) | |
if num_symbols <= 3: | |
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices)) | |
else: | |
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices) | |
X = word_length / num_symbols if num_symbols > 0 else 0 | |
H = int(X+(Yo*0.1)) | |
avg_H_list.append(H) | |
avg_H = int(mean(avg_H_list)) | |
words_in_para = [] | |
for word in paragraph.words: | |
# Get word-level bounding box | |
bound_word_dict = { | |
"vertices": [ | |
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices | |
] | |
} | |
bounds_word.append(bound_word_dict) | |
Y = max(vertex.y for vertex in word.bounding_box.vertices) | |
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices) | |
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices) | |
num_symbols = len(word.symbols) | |
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0 | |
current_x_position = word_x_start | |
characters_ind = [] | |
for symbol in word.symbols: | |
bound_dict = { | |
"vertices": [ | |
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices | |
] | |
} | |
bounds.append(bound_dict) | |
# Create flat bounds with adjusted x position | |
bounds_flat_dict = { | |
"vertices": [ | |
{"x": current_x_position, "y": Y}, | |
{"x": current_x_position + symbol_width, "y": Y} | |
] | |
} | |
bounds_flat.append(bounds_flat_dict) | |
current_x_position += symbol_width | |
height_flat.append(avg_H) | |
confidences.append(round(symbol.confidence, 4)) | |
characters_ind.append(symbol.text) | |
characters.append(symbol.text) | |
words_in_para.append(''.join(characters_ind)) | |
paragraph_text = ' '.join(words_in_para) # Join words in paragraph | |
organized_text += paragraph_text + ' ' #+ '\n' | |
# median_height = statistics.median(height_flat) if height_flat else 0 | |
# median_heights = [median_height] * len(characters) | |
self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else '' | |
self.hand_organized_text = organized_text | |
self.hand_bounds = bounds | |
self.hand_bounds_word = bounds_word | |
self.hand_bounds_flat = bounds_flat | |
self.hand_text_to_box_mapping = text_to_box_mapping | |
# self.hand_height = median_heights #height_flat | |
self.hand_height = height_flat | |
self.hand_confidences = confidences | |
self.hand_characters = characters | |
return self.hand_cleaned_text | |
def process_image(self, do_create_OCR_helper_image, logger): | |
# Can stack options, so solitary if statements | |
self.OCR = 'OCR:\n' | |
if 'CRAFT' in self.OCR_option: | |
self.do_use_trOCR = True | |
self.detect_text_craft() | |
### Optionally add trOCR to the self.OCR for additional context | |
if self.double_OCR: | |
part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
self.OCR = self.OCR + part_OCR + part_OCR | |
else: | |
self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
# logger.info(f"CRAFT trOCR:\n{self.OCR}") | |
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:') | |
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt) | |
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}") | |
try: | |
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output | |
except: | |
self.OCR_JSON_to_file = {} | |
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output | |
if self.double_OCR: | |
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}" | |
else: | |
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" | |
# logger.info(f"LLaVA OCR:\n{self.OCR}") | |
if 'normal' in self.OCR_option or 'hand' in self.OCR_option: | |
if 'normal' in self.OCR_option: | |
if self.double_OCR: | |
part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text() | |
self.OCR = self.OCR + part_OCR + part_OCR | |
else: | |
self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text() | |
if 'hand' in self.OCR_option: | |
if self.double_OCR: | |
part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr() | |
self.OCR = self.OCR + part_OCR + part_OCR | |
else: | |
self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr() | |
# if self.OCR_option not in ['normal', 'hand', 'both']: | |
# self.OCR_option = 'both' | |
# self.detect_text() | |
# self.detect_handwritten_ocr() | |
### Optionally add trOCR to the self.OCR for additional context | |
if self.do_use_trOCR: | |
if self.double_OCR: | |
part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
self.OCR = self.OCR + part_OCR + part_OCR | |
else: | |
self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
# logger.info(f"OCR:\n{self.OCR}") | |
else: | |
# populate self.OCR_JSON_to_file = {} | |
_ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger) | |
if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option): | |
self.image = Image.open(self.path) | |
if 'normal' in self.OCR_option: | |
image_with_boxes_normal = self.draw_boxes('normal') | |
text_image_normal = self.render_text_on_black_image('normal') | |
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal) | |
if 'hand' in self.OCR_option: | |
image_with_boxes_hand = self.draw_boxes('hand') | |
text_image_hand = self.render_text_on_black_image('hand') | |
self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand) | |
if self.do_use_trOCR: | |
text_image_trOCR = self.render_text_on_black_image('trOCR') | |
if 'CRAFT' in self.OCR_option: | |
image_with_boxes_normal = self.draw_boxes('normal') | |
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR) | |
### Merge final overlay image | |
### [original, normal bboxes, normal text] | |
if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option: | |
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal) | |
### [original, hand bboxes, hand text] | |
elif 'hand' in self.OCR_option: | |
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand) | |
### [original, normal bboxes, normal text, hand bboxes, hand text] | |
else: | |
self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand)) | |
if self.do_use_trOCR: | |
if 'CRAFT' in self.OCR_option: | |
heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB)) | |
heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB)) | |
self.overlay_image = self.merge_images(self.overlay_image, heat_map_text) | |
self.overlay_image = self.merge_images(self.overlay_image, heat_map_link) | |
else: | |
self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR) | |
else: | |
self.merged_image_normal = None | |
self.merged_image_hand = None | |
self.overlay_image = Image.open(self.path) | |
try: | |
from craft_text_detector import empty_cuda_cache | |
empty_cuda_cache() | |
except: | |
pass | |
class SafetyCheck(): | |
def __init__(self, is_hf) -> None: | |
self.is_hf = is_hf | |
self.set_client() | |
def set_client(self): | |
if self.is_hf: | |
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
else: | |
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials()) | |
def get_google_credentials(self): | |
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS') | |
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str)) | |
return credentials | |
def check_for_inappropriate_content(self, file_stream): | |
self.client = vision.ImageAnnotatorClient() | |
content = file_stream.read() | |
image = vision.Image(content=content) | |
response = self.client.safe_search_detection(image=image) | |
safe = response.safe_search_annotation | |
# Check the levels of adult, violence, racy, etc. content. | |
if (safe.adult > vision.Likelihood.POSSIBLE or | |
safe.violence > vision.Likelihood.POSSIBLE or | |
safe.racy > vision.Likelihood.POSSIBLE): | |
return True # The image violates safe search guidelines. | |
return False # The image is considered safe. |