phyloforfun's picture
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
9d06861
raw
history blame
5.08 kB
# Helper funcs for LLM_XXXXX.py
import tiktoken, json, os, yaml
from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS
from transformers import AutoTokenizer
import GPUtil
import time
import psutil
import threading
import torch
from datetime import datetime
def save_individual_prompt(prompt_template, txt_file_path_ind_prompt):
with open(txt_file_path_ind_prompt, 'w',encoding='utf-8') as file:
file.write(prompt_template)
def remove_colons_and_double_apostrophes(text):
return text.replace(":", "").replace("\"", "")
def count_tokens(string, vendor, model_name):
full_string = string + JSON_FORMAT_INSTRUCTIONS
def run_count(full_string, model_name):
# Ensure the encoding is obtained correctly.
encoding = tiktoken.encoding_for_model(model_name)
tokens = encoding.encode(full_string)
return len(tokens)
try:
if vendor == 'mistral':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
tokens = tokenizer.tokenize(full_string)
return len(tokens)
else:
return run_count(full_string, model_name)
except Exception as e:
print(f"An error occurred: {e}")
return 0
class SystemLoadMonitor():
def __init__(self, logger) -> None:
self.monitoring_thread = None
self.logger = logger
self.gpu_usage = {'max_cpu_usage': 0, 'max_load': 0, 'max_vram_usage': 0, "max_ram_usage": 0, 'monitoring': True}
self.start_time = None
self.tool_start_time = None
self.has_GPU = torch.cuda.is_available()
self.monitor_interval = 2
def start_monitoring_usage(self):
self.start_time = time.time()
self.monitoring_thread = threading.Thread(target=self.monitor_usage, args=(self.monitor_interval,))
self.monitoring_thread.start()
def stop_inference_timer(self):
# Stop inference timer and record elapsed time
self.inference_time = time.time() - self.start_time
# Immediately start the tool timer
self.tool_start_time = time.time()
def monitor_usage(self, interval):
while self.gpu_usage['monitoring']:
# GPU monitoring
if self.has_GPU:
GPUs = GPUtil.getGPUs()
for gpu in GPUs:
self.gpu_usage['max_load'] = max(self.gpu_usage['max_load'], gpu.load)
# Convert memory usage to GB
memory_usage_gb = gpu.memoryUsed / 1024.0
self.gpu_usage['max_vram_usage'] = max(self.gpu_usage.get('max_vram_usage', 0), memory_usage_gb)
# RAM monitoring
ram_usage = psutil.virtual_memory().used / (1024.0 ** 3) # Get RAM usage in GB
self.gpu_usage['max_ram_usage'] = max(self.gpu_usage.get('max_ram_usage', 0), ram_usage)
# CPU monitoring
cpu_usage = psutil.cpu_percent(interval=None)
self.gpu_usage['max_cpu_usage'] = max(self.gpu_usage.get('max_cpu_usage', 0), cpu_usage)
time.sleep(interval)
def get_current_datetime(self):
# Get the current date and time
now = datetime.now()
# Format it as a string, replacing colons with underscores
datetime_iso = now.strftime('%Y_%m_%dT%H_%M_%S')
return datetime_iso
def stop_monitoring_report_usage(self):
report = {}
self.gpu_usage['monitoring'] = False
self.monitoring_thread.join()
# Calculate tool time by checking if tool_start_time is set
if self.tool_start_time:
tool_time = time.time() - self.tool_start_time
else:
tool_time = 0
report = {'inference_time_s': str(round(self.inference_time,2)),
'tool_time_s': str(round(tool_time, 2)),
'max_cpu': str(round(self.gpu_usage['max_cpu_usage'],2)),
'max_ram_gb': str(round(self.gpu_usage['max_ram_usage'],2)),
'current_time': self.get_current_datetime(),
}
self.logger.info(f"Inference Time: {round(self.inference_time,2)} seconds")
self.logger.info(f"Tool Time: {round(tool_time,2)} seconds")
self.logger.info(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
self.logger.info(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")
if self.has_GPU:
report.update({'max_gpu_load': str(round(self.gpu_usage['max_load']*100,2))})
report.update({'max_gpu_vram_gb': str(round(self.gpu_usage['max_vram_usage'],2))})
self.logger.info(f"Max GPU Load: {round(self.gpu_usage['max_load']*100,2)}%")
self.logger.info(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'],2)}GB")
else:
report.update({'max_gpu_load': str(0)})
report.update({'max_gpu_vram_gb': str(0)})
return report