phyloforfun's picture
Add application file
87c3140
raw
history blame
43.1 kB
import os, math, cv2, random
import numpy as np
from itertools import combinations
from PIL import Image
from dataclasses import dataclass, field
from typing import List, Dict
from sklearn.linear_model import LinearRegression
from scipy.optimize import fsolve, minimize
@dataclass()
class ArmatureSkeleton:
cfg: str
Dirs: str
leaf_type: str
all_points: list
dir_temp: str
file_name: str
width: int
height: int
logger: object
is_complete: bool = False
keep_going: bool = False
do_show_QC_images: bool = False
do_save_QC_images: bool = False
classes: int = 0
points_list: int = 0
image: int = 0
ordered_middle: int = 0
midvein_fit: int = 0
midvein_fit_points: int = 0
ordered_midvein_length: float = 0.0
has_middle = False
has_outer = False
has_tip = False
is_split = False
ordered_petiole: int = 0
ordered_petiole_length: float = 0.0
has_ordered_petiole = False
has_apex: bool = False
apex_left: int = 0
apex_right: int = 0
apex_center: int = 0
apex_angle_type: str = 'NA'
apex_angle_degrees: float = 0.0
has_base: bool = False
base_left: int = 0
base_right: int = 0
base_center: int = 0
base_angle_type: str = 'NA'
base_angle_degrees: float = 0.0
has_lamina_base: bool = False
lamina_base: int = 0
has_lamina_length: bool = False
lamina_fit: int = 0
lamina_length: float = 0.0
has_width: bool = False
lamina_width: float = 0.0
width_left: float = 0.0
width_right: float = 0.0
def __init__(self, cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) -> None:
# Store the necessary arguments as instance attributes
self.cfg = cfg
self.Dirs = Dirs
self.leaf_type = leaf_type
self.all_points = all_points
self.height = height
self.width = width
self.dir_temp = dir_temp
self.file_name = file_name
logger.name = f'[{leaf_type} - {file_name}]'
self.logger = logger
self.init_lists_dicts()
""" Setup """
self.set_cfg_values()
self.define_landmark_classes()
self.setup_QC_image()
self.setup_angle_image()
self.setup_final_image()
self.parse_all_points()
self.convert_YOLO_bbox_to_point()
if (len(self.points_list['outer']) > 6) and (len(self.points_list['middle']) > 3):
self.keep_going = True
""" Landmarks """
if self.keep_going:
# Start with ordering the midvein and petiole
self.order_middle()
# print(self.ordered_midvein)
if self.keep_going:
# Split the image using the midvein IF has_midvein == True
self.split_image_by_middle()
if self.keep_going:
self.group_outer_points()
if self.keep_going:
# Measure
self.measure_armature()
if self.keep_going:
# calc tangent angle of outer and inner polys
self.calc_angle_tangent()
if self.keep_going:
self.calc_angle_curl()
if self.keep_going:
# self.calc_angle_bend()
self.calc_curvature_radius()
if self.keep_going:
self.calc_direct_length()
# self.show_QC_image()
# self.show_angle_image()
self.is_complete = True # TODO add ways to set True
def measure_armature(self):
# wb = width_base = line between the last outer and inner points
# Define the line function
def line_func(x):
return self.wb_slope * x + self.wb_intercept
def middle_func(x):
return self.middle_poly[0]*x**2 + self.middle_poly[1]*x + self.middle_poly[2]
# Define the difference function
def line_middle_diff(x):
return line_func(x) - middle_func(x)
# Convert the points to numpy arrays
last_point_right = np.array(self.last_point_right)
last_point_left = np.array(self.last_point_left)
# Calculate the Euclidean distance between the points
self.width_base = np.linalg.norm(last_point_right - last_point_left)
print("The distance between the last points of the right and left segments is:", self.width_base)
# Intersection of the width and the middlepoly# Draw a line between the last points of the outer_left and outer_right segments
cv2.line(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), (int(self.last_point_right[0]), int(self.last_point_right[1])), gc('white'), thickness=2)
cv2.line(self.image_angles, (int(self.last_point_left[0]), int(self.last_point_left[1])), (int(self.last_point_right[0]), int(self.last_point_right[1])), color=gc('white'), thickness=2)
# Calculate the slope and y-intercept of the line
self.wb_slope = (self.last_point_right[1] - self.last_point_left[1]) / (self.last_point_right[0] - self.last_point_left[0])
self.wb_intercept = self.last_point_left[1] - self.wb_slope * self.last_point_left[0]
# Find the intersection point
intersection_x = fsolve(line_middle_diff, 0)[0]
intersection_y = line_func(intersection_x)
self.width_base_inter = [(int(intersection_x), int(intersection_y))]
# Calculate the midpoint between the last points
self.width_base_mid = (last_point_right + last_point_left) / 2
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=2, color=gc('green'), thickness=-1)
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.width_base_mid[0]), int(self.width_base_mid[1])), radius=2, color=gc('red'), thickness=-1)
cv2.circle(self.image, (int(self.width_base_mid[0]), int(self.width_base_mid[1])), radius=4, color=gc('black'), thickness=2)
print("The intersection point of the line and the middle polynomial is:", (intersection_x, intersection_y))
def calc_direct_length(self):
# Calculate the x-coordinate of the intersection point
x_intersection = (self.wb_intercept_perpendicular - self.wb_intercept) / (self.wb_slope - self.wb_slope_perpendicular)
# Calculate the y-coordinate of the intersection point
y_intersection = self.wb_slope * x_intersection + self.wb_intercept
# Store the intersection point as self.wb_origin
self.wb_origin = np.array([x_intersection, y_intersection])
# Calculate the distance between the intersection point and self.inter_point
self.length_direct = np.linalg.norm(self.wb_origin - self.inter_point)
# Plot a 2-pixel thick red line from self.wb_origin to self.inter_point
cv2.line(self.image_angles, tuple(map(int, self.wb_origin)), tuple(map(int, self.inter_point)), gc('red'), thickness=2)
def calc_curvature_radius(self):
def fit_circle_least_squares(points):
if len(points) <= 1:
return 0.0, (0, 0)
def calc_residuals(params, points):
x0, y0, r = params
residuals = np.sqrt((points[:, 0] - x0) ** 2 + (points[:, 1] - y0) ** 2) - r
return residuals
def objective(params, points):
return np.sum(calc_residuals(params, points) ** 2)
x_mean = np.mean(points[:, 0])
y_mean = np.mean(points[:, 1])
r_mean = np.mean(np.sqrt((points[:, 0] - x_mean) ** 2 + (points[:, 1] - y_mean) ** 2))
init_params = [x_mean, y_mean, r_mean]
result = minimize(objective, init_params, args=(points,), method='L-BFGS-B')
x0, y0, r = result.x
return r, (x0, y0)
self.radius_middle, center_middle = fit_circle_least_squares(self.ordered_middle_np)
self.radius_outer_left, center_outer_left = fit_circle_least_squares(self.ordered_outer_left_np)
self.radius_outer_right, center_outer_right = fit_circle_least_squares(self.ordered_outer_right_np)
# Plot the circles on self.image_angles
cv2.circle(self.image_angles, (int(center_middle[0]), int(center_middle[1])), int(self.radius_middle), gc('yellow'), thickness=1)
cv2.circle(self.image_angles, (int(center_outer_left[0]), int(center_outer_left[1])), int(self.radius_outer_left), gc('pink'), thickness=1)
cv2.circle(self.image_angles, (int(center_outer_right[0]), int(center_outer_right[1])), int(self.radius_outer_right), gc('cyan'), thickness=1)
print('hi')
def calc_angle_bend(self):
print('hi')
def calc_angle_curl(self):
# Define the perpendicular line function
def wb_line_perpendicular(x):
return self.wb_slope_perpendicular * x + self.wb_intercept_perpendicular
# Calculate the slope of the line perpendicular to the given line
self.wb_slope_perpendicular = -1 / self.wb_slope
# Calculate the y-intercept of the line perpendicular to the given line
self.wb_intercept_perpendicular = self.inter_point[1] - self.wb_slope_perpendicular * self.inter_point[0]
# Line fit to first 3 points in self.ordered_middle
self.middle_tip_poly = np.polyfit(self.ordered_middle_np[0:3, 0], self.ordered_middle_np[0:3, 1], 1)
middle_tip_slope = self.middle_tip_poly[0]
# angle between middle_tip fit the curl perpendicular
theta = math.atan(abs((middle_tip_slope - self.wb_slope_perpendicular) / (1 + self.wb_slope_perpendicular*middle_tip_slope)))
# Convert the angle to degrees
self.angle_curl = math.degrees(theta)
print("The angle between the lines is:", self.angle_curl, "degrees")
# Draw the tangents at the intersection point
intersection_point = np.array(self.inter_point_outer_inner, dtype=int)
length = 50 # Length of the tangent lines
# Calculate the points for the tangent lines
curl_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * self.wb_slope_perpendicular)
curl_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * self.wb_slope_perpendicular)
middle_tip_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * middle_tip_slope)
middle_tip_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * middle_tip_slope)
# Convert the points to integers
curl_tangent_point1 = tuple(map(int, curl_tangent_point1))
curl_tangent_point2 = tuple(map(int, curl_tangent_point2))
middle_tip_tangent_point1 = tuple(map(int, middle_tip_tangent_point1))
middle_tip_tangent_point2 = tuple(map(int, middle_tip_tangent_point2))
# Draw the tangent lines
cv2.line(self.image_angles, intersection_point, curl_tangent_point1, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, curl_tangent_point2, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, middle_tip_tangent_point1, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, middle_tip_tangent_point2, gc('teal'), 1)
# Draw the arc representing the angle
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 0, 0, self.angle_curl, gc('teal'), 2)
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 180, 0, self.angle_curl, gc('teal'), 2)
### plot the wb_line_perpendicular
# Calculate the y values for the start and end points of the line
y_start = max(0, int(wb_line_perpendicular(0)))
y_end = min(self.height, int(wb_line_perpendicular(self.width)))
# Define the range of y values for the line
y_range = np.linspace(y_start, y_end, num=100, dtype=int) # You can adjust 'num' to control the number of points
# Draw the dotted gray line
for i in range(len(y_range) - 1):
y1, x1 = y_range[i], int((y_range[i] - self.wb_intercept_perpendicular) / self.wb_slope_perpendicular)
x1 = max(0, min(x1, self.width)) # Keep x1 within the bounds of the image width
y2, x2 = y_range[i+1], int((y_range[i+1] - self.wb_intercept_perpendicular) / self.wb_slope_perpendicular)
x2 = max(0, min(x2, self.width)) # Keep x2 within the bounds of the image width
if i % 2 == 0: # Change the value of 2 to adjust the spacing between the dots
cv2.line(self.image_angles, (x1, y1), (x2, y2), gc('white'), 1)
def calc_angle_tangent(self):
# Define the polynomial functions
def left_func(x):
return self.left_poly[0]*x**2 + self.left_poly[1]*x + self.left_poly[2]
def right_func(x):
return self.right_poly[0]*x**2 + self.right_poly[1]*x + self.right_poly[2]
# Define the difference function
def left_right_diff(x):
return left_func(x) - right_func(x)
# Find the x-coordinate of the intersection point
intersection_x = fsolve(left_right_diff, 0)[0]
# Calculate the y-coordinate of the intersection point on the left and right curves
intersection_y_left = left_func(intersection_x)
intersection_y_right = right_func(intersection_x)
# Calculate the derivatives of the polynomials at the intersection point
left_derivative = 2*self.left_poly[0]*intersection_x + self.left_poly[1]
right_derivative = 2*self.right_poly[0]*intersection_x + self.right_poly[1]
# Calculate the angle between the tangents to the polynomials at the intersection point
theta = math.atan(abs((right_derivative - left_derivative) / (1 + left_derivative*right_derivative)))
# Convert the angle to degrees
self.angle_tangent = math.degrees(theta)
print("The angle between the left and right polynomials at their point of intersection is:", theta, "degrees")
# Draw the tangents at the intersection point
intersection_point = np.array([int(intersection_x), int(intersection_y_left + (intersection_y_right - intersection_y_left)/2)])
length = 30 # Length of the tangent lines
# Calculate the points for the tangent lines
left_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * left_derivative)
left_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * left_derivative)
right_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * right_derivative)
right_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * right_derivative)
# Convert the points to integers
left_tangent_point1 = tuple(map(int, left_tangent_point1))
left_tangent_point2 = tuple(map(int, left_tangent_point2))
right_tangent_point1 = tuple(map(int, right_tangent_point1))
right_tangent_point2 = tuple(map(int, right_tangent_point2))
# # Draw the tangent lines
# cv2.line(self.image_angles, intersection_point, left_tangent_point1, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, left_tangent_point2, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, right_tangent_point1, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, right_tangent_point2, gc('yellow'), 1)
# Draw the arc representing the angle
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 0, 0, self.angle_tangent, gc('yellow'), 2)
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 180, 0, self.angle_tangent, gc('yellow'), 2)
# self.show_angle_image()
# return theta
def group_outer_points(self):
# Split the points into two groups based on their position relative to the line
self.outer_left = []
self.outer_right = []
# if 'tip' in self.points_list:
for point in self.points_list['outer']:
x, y = point
predicted_y = self.predict_y(x)
if y > predicted_y:
self.outer_right.append(point)
else:
self.outer_left.append(point)
self.outer_right = np.array(self.outer_right)
self.outer_left = np.array(self.outer_left)
if (len(self.outer_right) < 3) or (len(self.outer_left) < 3):
self.keep_going = False
else:
# Plot `outer_left` points in pink
for point in self.outer_left:
x, y = point
cv2.circle(self.image, (x, y), radius=5, color=gc('pink'), thickness=-1)
# Plot `outer_right` points in cyan
for point in self.outer_right:
x, y = point
cv2.circle(self.image, (x, y), radius=5, color=gc('cyan'), thickness=-1)
### outer_left
self.outer_left = self.order_points(self.outer_left)
self.outer_left = self.remove_duplicate_points(self.outer_left)
# self.outer_left = self.check_momentum(self.outer_left, False)
self.order_points_plot(self.outer_left, 'outer_left', 'final')
self.order_points_plot(self.outer_left, 'outer_left', 'QC')
self.outer_left_length, self.outer_left = self.get_length_of_ordered_points(self.outer_left, 'outer_left')
self.has_outer_left = True
### outer_right
self.outer_right = self.order_points(self.outer_right)
self.outer_right = self.remove_duplicate_points(self.outer_right)
# self.outer_right = self.check_momentum(self.outer_right, False)
self.order_points_plot(self.outer_right, 'outer_right', 'final')
self.order_points_plot(self.outer_right, 'outer_right', 'QC')
self.outer_right_length, self.outer_right = self.get_length_of_ordered_points(self.outer_right, 'outer_right')
self.has_middle = True
print(f"Length outer_left - {self.outer_left_length}")
print(f"Length outer_right - {self.outer_right_length}")
self.outer_right_np = np.array(self.outer_right)
self.outer_left_np = np.array(self.outer_left)
self.ordered_middle_np = np.array(self.ordered_middle)
# Fit 2nd order polynomials to the line segments
self.left_poly = np.polyfit(self.outer_left_np[:, 0], self.outer_left_np[:, 1], 2)
self.right_poly = np.polyfit(self.outer_right_np[:, 0], self.outer_right_np[:, 1], 2)
self.middle_poly = np.polyfit(self.ordered_middle_np[:, 0], self.ordered_middle_np[:, 1], 2)
# Evaluate polynomial coefficients for a range of x values
x_range = np.linspace(0, self.width, num=100)
left_line = np.polyval(self.left_poly, x_range)
right_line = np.polyval(self.right_poly, x_range)
self.middle_line = np.polyval(self.middle_poly, x_range)
# Plot lines of fit as white lines
for i in range(len(x_range)-1):
cv2.line(self.image, (int(x_range[i]), int(left_line[i])), (int(x_range[i+1]), int(left_line[i+1])), color=gc('gray'), thickness=1)
cv2.line(self.image, (int(x_range[i]), int(right_line[i])), (int(x_range[i+1]), int(right_line[i+1])), color=gc('white'), thickness=1)
cv2.line(self.image, (int(x_range[i]), int(self.middle_line[i])), (int(x_range[i+1]), int(self.middle_line[i+1])), color=gc('white'), thickness=2)
# Define the polynomial functions
def left_func(x):
return self.left_poly[0]*x**2 + self.left_poly[1]*x + self.left_poly[2]
def right_func(x):
return self.right_poly[0]*x**2 + self.right_poly[1]*x + self.right_poly[2]
def middle_func(x):
return self.middle_poly[0]*x**2 + self.middle_poly[1]*x + self.middle_poly[2]
# Define the difference functions
def left_middle_diff(x):
return left_func(x) - middle_func(x)
def right_middle_diff(x):
return right_func(x) - middle_func(x)
def left_right_diff(x):
return left_func(x) - right_func(x)
# Find the intersection points
left_middle_intersection_x = fsolve(left_middle_diff, 0)
right_middle_intersection_x = fsolve(right_middle_diff, 0)
left_right_intersection_x = fsolve(left_right_diff, 0)
left_middle_intersection_y = left_func(left_middle_intersection_x)[0]
right_middle_intersection_y = right_func(right_middle_intersection_x)[0]
left_right_intersection_y = left_func(left_right_intersection_x)[0]
# Keep only points within the image boundaries
intersection_points = np.array([[left_middle_intersection_x, left_middle_intersection_y], [right_middle_intersection_x, right_middle_intersection_y], [left_right_intersection_x, left_right_intersection_y]])
intersection_points = intersection_points[(intersection_points[:, 0] >= 0) & (intersection_points[:, 0] <= self.width) & (intersection_points[:, 1] >= 0) & (intersection_points[:, 1] <= self.height)]
if intersection_points.size == 0:
self.keep_going = False
else:
# Compute the average of the intersection points
intersection_x = np.mean(intersection_points[:, 0])
intersection_y = np.mean(intersection_points[:, 1])
self.inter_point = [int(intersection_x), int(intersection_y)]
self.inter_point_outer_inner = [int(left_right_intersection_x), int(left_right_intersection_y)]
# Draw intersection point on the image
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=5, color=gc('green'), thickness=-1)
print(f"Length outer_left - {self.outer_left_length}")
print(f"Length outer_right - {self.outer_right_length}")
print(f"Intersection point - ({int(intersection_x)}, {int(intersection_y)})")
# Make the first points be at the tip, last points far away at base
def reorder_segment(segment, inter):
# Convert to numpy arrays for easier manipulation
segment = np.array(segment)
inter = np.array(inter)
# Calculate the Euclidean distance from the INTER point to the first and last points in the segment
dist_first = np.linalg.norm(segment[0] - inter)
dist_last = np.linalg.norm(segment[-1] - inter)
# If the last point is closer to the INTER point than the first point, reverse the order of the segment
if dist_last < dist_first:
segment = segment[::-1]
return segment.tolist()
self.ordered_middle = reorder_segment(self.ordered_middle, self.inter_point)
self.outer_left = reorder_segment(self.outer_left, self.inter_point)
self.outer_right = reorder_segment(self.outer_right, self.inter_point)
self.ordered_outer_right_np = np.array(self.outer_right)
self.ordered_outer_left_np = np.array(self.outer_left)
self.ordered_middle_np = np.array(self.ordered_middle)
# Draw a black ring around the last point of the outer_left segment
self.last_point_left = self.outer_left[-1]
cv2.circle(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), radius=6, color=gc('white'), thickness=2)
# Draw a black ring around the last point of the outer_right segment
self.last_point_right = self.outer_right[-1]
cv2.circle(self.image, (int(self.last_point_right[0]), int(self.last_point_right[1])), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.last_point_right[0]), int(self.last_point_right[1])), radius=6, color=gc('white'), thickness=2)
# self.show_QC_image()
# print('hi')
def split_image_by_middle(self):
if not self.has_middle:
self.keep_going = False
else:
n_fit = 2
# Convert the points to a numpy array
points_arr = np.array(self.ordered_middle)
# Fit a line to the points
self.midvein_fit = np.polyfit(points_arr[:, 0], points_arr[:, 1], n_fit)
# Plot a sample of points from along the line
max_dim = max(self.height, self.width)
if max_dim < 400:
num_points = 40
elif max_dim < 1000:
num_points = 80
else:
num_points = 120
# Get the endpoints of the line segment that lies within the bounds of the image
x1 = 0
y1 = int(self.midvein_fit[0] * x1**2 + self.midvein_fit[1] * x1 + self.midvein_fit[2])
x2 = self.width - 1
y2 = int(self.midvein_fit[0] * x2**2 + self.midvein_fit[1] * x2 + self.midvein_fit[2])
denom = self.midvein_fit[0]
if denom == 0:
denom = 0.0000000001
if y1 < 0:
y1 = 0
x1 = int((y1 - self.midvein_fit[1]) / denom)
if y2 >= self.height:
y2 = self.height - 1
x2 = int((y2 - self.midvein_fit[1]) / denom)
# Sample num_points points along the line segment within the bounds of the image
x_vals = np.linspace(x1, x2, num_points)
y_vals = self.midvein_fit[0] * x_vals**2 + self.midvein_fit[1] * x_vals + self.midvein_fit[2]
# Remove any points that are outside the bounds of the image
indices = np.where((y_vals >= 0) & (y_vals < self.height))[0]
x_vals = x_vals[indices]
y_vals = y_vals[indices]
# Recompute y-values using the line equation and updated x-values
y_vals = self.midvein_fit[0] * x_vals + self.midvein_fit[1]
self.midvein_fit_points = np.column_stack((x_vals, y_vals))
self.is_split = True
# Draw line of fit
# for point in self.midvein_fit_points:
# cv2.circle(self.image, tuple(point.astype(int)), radius=1, color=(255, 255, 255), thickness=-1)
def predict_y(self, x):
return self.midvein_fit[0] * x**2 + self.midvein_fit[1] * x + self.midvein_fit[2]
def order_middle(self):
if 'middle' not in self.points_list:
self.keep_going = False
else:
if len(self.points_list['middle']) >= 5:
self.logger.debug(f"Ordered Middle - Raw list contains {len(self.points_list['middle'])} points - using momentum")
self.ordered_middle = self.order_points(self.points_list['middle'])
self.ordered_middle = self.remove_duplicate_points(self.ordered_middle)
self.ordered_middle = self.check_momentum(self.ordered_middle, False)
self.v_tip = self.find_v_tip(self.points_list['outer'])
# self.ordered_middle.append(self.v_tip)
self.order_points_plot(self.ordered_middle, 'middle', 'QC')
self.ordered_middle_length, self.ordered_middle = self.get_length_of_ordered_points(self.ordered_middle, 'middle')
self.has_middle = True
else:
self.keep_going = False
self.logger.debug(f"Ordered Middle - Raw list contains {len(self.points_list['middle'])} points - SKIPPING MIDDLE")
def v_shape_template(self, tip, scale):
return np.array([
[tip[0] - scale, tip[1] + scale],
tip,
[tip[0] + scale, tip[1] + scale]
])
def error_function(self, params, points):
tip = params[:2]
scale = params[2]
template_points = self.v_shape_template(tip, scale)
error = 0
for p in points:
dist = np.min(np.linalg.norm(template_points - p, axis=1))
error += dist
return error
def find_v_tip(self, points):
points = np.array(points)
initial_guess = np.mean(points, axis=0)
initial_scale = np.linalg.norm(np.max(points, axis=0) - np.min(points, axis=0)) / 2
result = minimize(
self.error_function,
np.hstack([initial_guess, initial_scale]),
args=(points,),
method='Nelder-Mead'
)
tip = result.x[:2]
return tuple(map(int, tip))
def show_QC_image(self):
if self.do_show_QC_images:
cv2.imshow('QC image', self.image)
cv2.waitKey(0)
def show_angle_image(self):
if self.do_show_QC_images:
cv2.imshow('Angles image', self.image_angles)
cv2.waitKey(0)
def show_final_image(self):
if self.do_show_final_images:
cv2.imshow('Final image', self.image_final)
cv2.waitKey(0)
def get_length_of_ordered_points(self, points, name):
# if self.file_name == 'B_774373631_Ebenaceae_Diospyros_buxifolia__L__438-687-578-774':
# print('hi')
total_length = 0
total_length_first_pass = 0
for i in range(len(points) - 1):
x1, y1 = points[i]
x2, y2 = points[i+1]
segment_length = math.sqrt((x2-x1)**2 + (y2-y1)**2)
total_length_first_pass += segment_length
cutoff = total_length_first_pass / 2
# print(f'Total length of {name}: {total_length_first_pass}')
# print(f'points length {len(points)}')
self.logger.debug(f"Total length of {name}: {total_length_first_pass}")
self.logger.debug(f"Points length {len(points)}")
# If there are more than 2 points, this will exclude extreme outliers, or
# misordered points that don't belong
if len(points) > 2:
pop_ind = []
for i in range(len(points) - 1):
x1, y1 = points[i]
x2, y2 = points[i+1]
segment_length = math.sqrt((x2-x1)**2 + (y2-y1)**2)
if segment_length < cutoff:
total_length += segment_length
else:
pop_ind.append(i)
for exclude in pop_ind:
points.pop(exclude)
# print(f'Total length of {name}: {total_length}')
# print(f'Excluded {len(pop_ind)} points')
# print(f'points length {len(points)}')
self.logger.debug(f"Total length of {name}: {total_length}")
self.logger.debug(f"Excluded {len(pop_ind)} points")
self.logger.debug(f"Points length {len(points)}")
else:
total_length = total_length_first_pass
return total_length, points
def order_points_plot(self, points, version, QC_or_final):
# thk_base = 0
thk_base = 16
if version == 'middle':
# color = (0, 255, 0)
color = gc('green') # blue
thick = 1 #2 + thk_base
elif version == 'tip':
color = gc('green')
thick = 1 #2 + thk_base
elif version == 'outer':
color = gc('red')
thick = 1 #2 + thk_base
elif version == 'outer_left':
color = gc('pink')
thick = 1 #2 + thk_base
elif version == 'outer_right':
color = gc('cyan')
thick = 1 #2 + thk_base
# elif version == 'lamina_width_alt':
# color = (100, 100, 255)
# thick = 2 + thk_base
# elif version == 'not_reflex':
# color = (200, 0, 123)
# thick = 3 + thk_base
# elif version == 'reflex':
# color = (0, 120, 200)
# thick = 3 + thk_base
# elif version == 'petiole_tip_alt':
# color = (255, 55, 100)
# thick = 1 + thk_base
# elif version == 'petiole_tip':
# color = (100, 255, 55)
# thick = 1 + thk_base
# elif version == 'failed_angle':
# color = (0, 0, 0)
# thick = 3 + thk_base
# Convert the points to a numpy array and round to integer values
points_arr = np.round(np.array(points)).astype(int)
# Draw a green line connecting all of the points
if QC_or_final == 'QC':
for i in range(len(points_arr) - 1):
cv2.line(self.image, tuple(points_arr[i]), tuple(points_arr[i+1]), color, thick)
else:
for i in range(len(points_arr) - 1):
cv2.line(self.image_final, tuple(points_arr[i]), tuple(points_arr[i+1]), color, thick)
def check_momentum(self, coords, info):
original_coords = coords
# find middle index of coordinates
mid_idx = len(coords) // 2
# set up variables for running average
running_avg = np.array(coords[mid_idx-1])
avg_count = 1
# iterate over coordinates to check momentum change
prev_vec = np.array(coords[mid_idx-1]) - np.array(coords[mid_idx-2])
cur_idx = mid_idx - 1
while cur_idx >= 0:
cur_vec = np.array(coords[cur_idx]) - np.array(coords[cur_idx-1])
# add current point to running average
running_avg = (running_avg * avg_count + np.array(coords[cur_idx])) / (avg_count + 1)
avg_count += 1
# check for momentum change
if self.check_momentum_change(prev_vec, cur_vec):
break
prev_vec = cur_vec
cur_idx -= 1
# use running average to check for momentum change
cur_vec = np.array(coords[cur_idx]) - running_avg
if self.check_momentum_change(prev_vec, cur_vec):
cur_idx += 1
prev_vec = np.array(coords[mid_idx+1]) - np.array(coords[mid_idx])
cur_idx2 = mid_idx + 1
while cur_idx2 < len(coords):
# check if current index is out of range
if cur_idx2 >= len(coords):
break
cur_vec = np.array(coords[cur_idx2]) - np.array(coords[cur_idx2-1])
# add current point to running average
running_avg = (running_avg * avg_count + np.array(coords[cur_idx2])) / (avg_count + 1)
avg_count += 1
# check for momentum change
if self.check_momentum_change(prev_vec, cur_vec):
break
prev_vec = cur_vec
cur_idx2 += 1
# use running average to check for momentum change
if cur_idx2 < len(coords):
cur_vec = np.array(coords[cur_idx2]) - running_avg
if self.check_momentum_change(prev_vec, cur_vec):
cur_idx2 -= 1
# remove problematic points and subsequent points from list of coordinates
new_coords = coords[:cur_idx2] + coords[mid_idx:cur_idx2:-1]
if info:
return new_coords, len(original_coords) != len(new_coords)
else:
return new_coords
# define function to check for momentum change
def check_momentum_change(self, prev_vec, cur_vec):
dot_product = np.dot(prev_vec, cur_vec)
prev_norm = np.linalg.norm(prev_vec)
cur_norm = np.linalg.norm(cur_vec)
denom = (prev_norm * cur_norm)
if denom == 0:
denom = 0.0000000001
cos_theta = dot_product / denom
theta = np.arccos(cos_theta)
return abs(theta) > np.pi / 2
def remove_duplicate_points(self, points):
unique_set = set()
new_list = []
for item in points:
if item not in unique_set:
unique_set.add(item)
new_list.append(item)
return new_list
def distance(self, point1, point2):
x1, y1 = point1
x2, y2 = point2
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
### Shortest distance
def order_points(self, points):
points = [tuple(point) for point in points] # Convert numpy.ndarray points to tuples
best_tour = None
shortest_tour_length = float('inf')
for start_point in points:
tour = [start_point]
unvisited = set(points) - {start_point}
while unvisited:
nearest = min(unvisited, key=lambda point: self.distance(tour[-1], point))
tour.append(nearest)
unvisited.remove(nearest)
# Calculate the length of the current tour
tour_length = sum(self.distance(tour[i - 1], tour[i]) for i in range(1, len(tour)))
# Update the best_tour if the current tour is shorter
if tour_length < shortest_tour_length:
shortest_tour_length = tour_length
best_tour = tour
return best_tour
### Smoothest
'''
def angle_between_points(self, p1, p2, p3):
v1 = np.array([p1[0] - p2[0], p1[1] - p2[1]])
v2 = np.array([p3[0] - p2[0], p3[1] - p2[1]])
angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
return angle
def order_points(self, points):
points = [tuple(point) for point in points] # Convert numpy.ndarray points to tuples
best_tour = None
largest_sum_angles = 0
for start_point in points:
tour = [start_point]
unvisited = set(points) - {start_point}
while unvisited:
nearest = min(unvisited, key=lambda point: self.distance(tour[-1], point))
tour.append(nearest)
unvisited.remove(nearest)
# Calculate the sum of angles for the current tour
sum_angles = sum(self.angle_between_points(tour[i - 1], tour[i], tour[i + 1]) for i in range(1, len(tour) - 1))
# Update the best_tour if the current tour has a larger sum of angles
if sum_angles > largest_sum_angles:
largest_sum_angles = sum_angles
best_tour = tour
return best_tour
'''
### ^^^ Smoothest
def convert_YOLO_bbox_to_point(self):
for point_type, bbox in self.points_list.items():
xy_points = []
for point in bbox:
x = point[0]
y = point[1]
w = point[2]
h = point[3]
x1 = int((x - w/2) * self.width)
y1 = int((y - h/2) * self.height)
x2 = int((x + w/2) * self.width)
y2 = int((y + h/2) * self.height)
xy_points.append((int((x1+x2)/2), int((y1+y2)/2)))
self.points_list[point_type] = xy_points
def parse_all_points(self):
points_list = {}
for sublist in self.all_points:
key = sublist[0]
value = sublist[1:]
key = self.swap_number_for_string(key)
if key not in points_list:
points_list[key] = []
points_list[key].append(value)
# print(points_list)
self.points_list = points_list
def swap_number_for_string(self, key):
for k, v in self.classes.items():
if v == key:
return k
return key
def setup_final_image(self):
self.image_final = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_image_final = os.path.join(self.Dirs.landmarks_armature_overlay_final, '.'.join([self.file_name, 'jpg']))
def setup_QC_image(self):
self.image = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_QC_image = os.path.join(self.Dirs.landmarks_armature_overlay_QC, '.'.join([self.file_name, 'jpg']))
def setup_angle_image(self):
self.image_angles = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_angles_image = os.path.join(self.Dirs.landmarks_armature_overlay_angles, '.'.join([self.file_name, 'jpg']))
def define_landmark_classes(self):
self.classes = {
'tip': 0,
'middle': 1,
'outer': 2,
}
def set_cfg_values(self):
self.do_show_QC_images = self.cfg['leafmachine']['landmark_detector_armature']['do_show_QC_images']
self.do_save_QC_images = self.cfg['leafmachine']['landmark_detector_armature']['do_save_QC_images']
self.do_show_final_images = self.cfg['leafmachine']['landmark_detector_armature']['do_show_final_images']
self.do_save_final_images = self.cfg['leafmachine']['landmark_detector_armature']['do_save_final_images']
def init_lists_dicts(self):
# Initialize all lists and dictionaries
self.classes = {}
self.points_list = []
self.image = []
self.ordered_middle = []
self.midvein_fit = []
self.midvein_fit_points = []
self.outer_right = []
self.outer_left = []
# self.ordered_outer_left = []
# self.ordered_outer_right = []
self.tip = []
self.apex_left = []
self.apex_right = []
self.apex_center = []
self.base_left = []
self.base_right = []
self.base_center = []
self.lamina_base = []
self.width_left = []
self.width_right = []
def get_final(self):
self.image_final = np.hstack((self.image, self.image_angles))
return self.image_final
def euclidean_distance(p1, p2):
return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def gc(color):
colors = {
'red': (0, 0, 255),
'green': (0, 255, 0),
'blue': (255, 0, 0),
'yellow': (0, 255, 255),
'pink': (255, 0, 255),
'cyan': (255, 255, 0),
'black': (0, 0, 0),
'white': (255, 255, 255),
'gray': (128, 128, 128),
'orange': (0, 165, 255),
'purple': (128, 0, 128),
'lightpink': (203, 192, 255),
'brown': (42, 42, 165),
'navy': (128, 0, 0),
'teal': (128, 128, 0),
}
return colors.get(color.lower(), (0, 0, 0))