VoucherVision / vouchervision /utils_VoucherVision.py
phyloforfun's picture
Add application file
87c3140
raw
history blame
40.9 kB
import openai
import os, sys, json, inspect, glob, tiktoken, shutil, yaml
import openpyxl
from openpyxl import Workbook, load_workbook
import google.generativeai as palm
from langchain.chat_models import AzureChatOpenAI
currentdir = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.append(parentdir)
from general_utils import get_cfg_from_full_path, num_tokens_from_string
from embeddings_db import VoucherVisionEmbedding
from OCR_google_cloud_vision import detect_text, overlay_boxes_on_image
from LLM_chatGPT_3_5 import OCR_to_dict, OCR_to_dict_16k
from LLM_PaLM import OCR_to_dict_PaLM
# from LLM_Falcon import OCR_to_dict_Falcon
from prompts import PROMPT_UMICH_skeleton_all_asia, PROMPT_OCR_Organized, PROMPT_UMICH_skeleton_all_asia_GPT4, PROMPT_OCR_Organized_GPT4, PROMPT_JSON
from prompt_catalog import PromptCatalog
'''
* For the prefix_removal, the image names have 'MICH-V-' prior to the barcode, so that is used for matching
but removed for output.
* There is also code active to replace the LLM-predicted "Catalog Number" with the correct number since it is known.
The LLMs to usually assign the barcode to the correct field, but it's not needed since it is already known.
- Look for ####################### Catalog Number pre-defined
'''
'''
Prior to StructuredOutputParser:
response = openai.ChatCompletion.create(
model=MODEL,
temperature = 0,
messages=[
{"role": "system", "content": "You are a helpful assistant acting as a transcription expert and your job is to transcribe herbarium specimen labels based on OCR data and reformat it to meet Darwin Core Archive Standards into a Python dictionary based on certain rules."},
{"role": "user", "content": prompt},
],
max_tokens=2048,
)
# print the model's response
return response.choices[0].message['content']
'''
class VoucherVision():
def __init__(self, cfg, logger, dir_home, path_custom_prompts, Project, Dirs):
self.cfg = cfg
self.logger = logger
self.dir_home = dir_home
self.path_custom_prompts = path_custom_prompts
self.Project = Project
self.Dirs = Dirs
self.headers = None
self.prompt_version = None
self.set_API_keys()
self.setup()
def setup(self):
self.logger.name = f'[Transcription]'
self.logger.info(f'Setting up OCR and LLM')
self.db_name = self.cfg['leafmachine']['project']['embeddings_database_name']
self.path_domain_knowledge = self.cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
self.build_new_db = self.cfg['leafmachine']['project']['build_new_embeddings_database']
self.continue_run_from_partial_xlsx = self.cfg['leafmachine']['project']['continue_run_from_partial_xlsx']
self.prefix_removal = self.cfg['leafmachine']['project']['prefix_removal']
self.suffix_removal = self.cfg['leafmachine']['project']['suffix_removal']
self.catalog_numerical_only = self.cfg['leafmachine']['project']['catalog_numerical_only']
self.prompt_version0 = self.cfg['leafmachine']['project']['prompt_version']
self.use_domain_knowledge = self.cfg['leafmachine']['project']['use_domain_knowledge']
self.catalog_name_options = ["Catalog Number", "catalog_number"]
self.utility_headers = ["tokens_in", "tokens_out", "path_to_crop","path_to_original","path_to_content","path_to_helper",]
self.map_prompt_versions()
self.map_dir_labels()
self.map_API_options()
self.init_embeddings()
self.init_transcription_xlsx()
'''Logging'''
self.logger.info(f'Transcribing dataset --- {self.dir_labels}')
self.logger.info(f'Saving transcription batch to --- {self.path_transcription}')
self.logger.info(f'Saving individual transcription files to --- {self.Dirs.transcription_ind}')
self.logger.info(f'Starting transcription...')
self.logger.info(f' LLM MODEL --> {self.version_name}')
self.logger.info(f' Using Azure API --> {self.is_azure}')
self.logger.info(f' Model name passed to API --> {self.model_name}')
self.logger.info(f' API access token is found in PRIVATE_DATA.yaml --> {self.has_key}')
def map_API_options(self):
self.chat_version = self.cfg['leafmachine']['LLM_version']
version_mapping = {
'GPT 4': ('OpenAI GPT 4', False, 'GPT_4', self.has_key_openai),
'GPT 3.5': ('OpenAI GPT 3.5', False, 'GPT_3_5', self.has_key_openai),
'Azure GPT 3.5': ('(Azure) OpenAI GPT 3.5', True, 'Azure_GPT_3_5', self.has_key_azure_openai),
'Azure GPT 4': ('(Azure) OpenAI GPT 4', True, 'Azure_GPT_4', self.has_key_azure_openai),
'PaLM 2': ('Google PaLM 2', None, None, self.has_key_palm2)
}
if self.chat_version not in version_mapping:
supported_LLMs = ", ".join(version_mapping.keys())
raise Exception(f"Unsupported LLM: {self.chat_version}. Requires one of: {supported_LLMs}")
self.version_name, self.is_azure, self.model_name, self.has_key = version_mapping[self.chat_version]
def map_prompt_versions(self):
self.prompt_version_map = {
"Version 1": "prompt_v1_verbose",
"Version 1 No Domain Knowledge": "prompt_v1_verbose_noDomainKnowledge",
"Version 2": "prompt_v2_json_rules",
"Version 1 PaLM 2": 'prompt_v1_palm2',
"Version 1 PaLM 2 No Domain Knowledge": 'prompt_v1_palm2_noDomainKnowledge',
"Version 2 PaLM 2": 'prompt_v2_palm2',
}
self.prompt_version = self.prompt_version_map.get(self.prompt_version0, self.path_custom_prompts)
self.is_predefined_prompt = self.is_in_prompt_version_map(self.prompt_version)
def is_in_prompt_version_map(self, value):
return value in self.prompt_version_map.values()
def init_embeddings(self):
if self.use_domain_knowledge:
self.logger.info(f'*** USING DOMAIN KNOWLEDGE ***')
self.logger.info(f'*** Initializing vector embeddings database ***')
self.initialize_embeddings()
else:
self.Voucher_Vision_Embedding = None
def map_dir_labels(self):
if self.cfg['leafmachine']['use_RGB_label_images']:
self.dir_labels = os.path.join(self.Dirs.save_per_annotation_class,'label')
else:
self.dir_labels = self.Dirs.save_original
# Use glob to get all image paths in the directory
self.img_paths = glob.glob(os.path.join(self.dir_labels, "*"))
def load_rules_config(self):
with open(self.path_custom_prompts, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
return None
def generate_xlsx_headers(self):
# Extract headers from the 'Dictionary' keys in the JSON template rules
xlsx_headers = list(self.rules_config_json['rules']["Dictionary"].keys())
xlsx_headers = xlsx_headers + self.utility_headers
return xlsx_headers
def init_transcription_xlsx(self):
self.HEADERS_v1_n22 = ["Catalog Number","Genus","Species","subspecies","variety","forma","Country","State","County","Locality Name","Min Elevation","Max Elevation","Elevation Units","Verbatim Coordinates","Datum","Cultivated","Habitat","Collectors","Collector Number","Verbatim Date","Date","End Date"]
self.HEADERS_v2_n26 = ["catalog_number","genus","species","subspecies","variety","forma","country","state","county","locality_name","min_elevation","max_elevation","elevation_units","verbatim_coordinates","decimal_coordinates","datum","cultivated","habitat","plant_description","collectors","collector_number","determined_by","multiple_names","verbatim_date","date","end_date"]
self.HEADERS_v1_n22 = self.HEADERS_v1_n22 + self.utility_headers
self.HEADERS_v2_n26 = self.HEADERS_v2_n26 + self.utility_headers
# Initialize output file
self.path_transcription = os.path.join(self.Dirs.transcription,"transcribed.xlsx")
if self.prompt_version in ['prompt_v2_json_rules','prompt_v2_palm2']:
self.headers = self.HEADERS_v2_n26
self.headers_used = 'HEADERS_v2_n26'
elif self.prompt_version in ['prompt_v1_verbose', 'prompt_v1_verbose_noDomainKnowledge','prompt_v1_palm2', 'prompt_v1_palm2_noDomainKnowledge']:
self.headers = self.HEADERS_v1_n22
self.headers_used = 'HEADERS_v1_n22'
else:
if not self.is_predefined_prompt:
# Load the rules configuration
self.rules_config_json = self.load_rules_config()
# Generate the headers from the configuration
self.headers = self.generate_xlsx_headers()
# Set the headers used to the dynamically generated headers
self.headers_used = 'CUSTOM'
else:
# If it's a predefined prompt, raise an exception as we don't have further instructions
raise ValueError("Predefined prompt is not handled in this context.")
self.create_or_load_excel_with_headers(os.path.join(self.Dirs.transcription,"transcribed.xlsx"), self.headers)
def pick_model(self, vendor, nt):
if vendor == 'GPT_3_5':
if nt > 6000:
return "gpt-3.5-turbo-16k-0613", True
else:
return "gpt-3.5-turbo", False
if vendor == 'GPT_4':
return "gpt-4", False
if vendor == 'Azure_GPT_3_5':
return "gpt-35-turbo", False
if vendor == 'Azure_GPT_4':
return "gpt-4", False
def create_or_load_excel_with_headers(self, file_path, headers, show_head=False):
output_dir_names = ['Archival_Components', 'Config_File', 'Cropped_Images', 'Logs', 'Original_Images', 'Transcription']
self.completed_specimens = []
# Check if the file exists and it's not None
if self.continue_run_from_partial_xlsx is not None and os.path.isfile(self.continue_run_from_partial_xlsx):
workbook = load_workbook(filename=self.continue_run_from_partial_xlsx)
sheet = workbook.active
show_head=True
# Identify the 'path_to_crop' column
try:
path_to_crop_col = headers.index('path_to_crop') + 1
path_to_original_col = headers.index('path_to_original') + 1
path_to_content_col = headers.index('path_to_content') + 1
path_to_helper_col = headers.index('path_to_helper') + 1
# self.completed_specimens = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
except ValueError:
print("'path_to_crop' not found in the header row.")
path_to_crop = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
path_to_original = list(sheet.iter_cols(min_col=path_to_original_col, max_col=path_to_original_col, values_only=True, min_row=2))
path_to_content = list(sheet.iter_cols(min_col=path_to_content_col, max_col=path_to_content_col, values_only=True, min_row=2))
path_to_helper = list(sheet.iter_cols(min_col=path_to_helper_col, max_col=path_to_helper_col, values_only=True, min_row=2))
others = [path_to_crop_col, path_to_original_col, path_to_content_col, path_to_helper_col]
jsons = [path_to_content_col, path_to_helper_col]
for cell in path_to_crop[0]:
old_path = cell
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
self.completed_specimens.append(os.path.basename(updated_path))
print(f"{len(self.completed_specimens)} images are already completed")
### Copy the JSON files over
for colu in jsons:
cell = next(sheet.iter_rows(min_row=2, min_col=colu, max_col=colu))[0]
old_path = cell.value
new_path = file_path
old_path_parts = old_path.split('Transcription')
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + 'Transcription' + old_path_parts[1]
# Copy files
old_dir = os.path.dirname(old_path)
new_dir = os.path.dirname(updated_path)
# Check if old_dir exists and it's a directory
if os.path.exists(old_dir) and os.path.isdir(old_dir):
# Check if new_dir exists. If not, create it.
if not os.path.exists(new_dir):
os.makedirs(new_dir)
# Iterate through all files in old_dir and copy each to new_dir
for filename in os.listdir(old_dir):
shutil.copy2(os.path.join(old_dir, filename), new_dir) # copy2 preserves metadata
### Update the file names
for colu in others:
for row in sheet.iter_rows(min_row=2, min_col=colu, max_col=colu):
for cell in row:
old_path = cell.value
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
cell.value = updated_path
show_head=True
else:
# Create a new workbook and select the active worksheet
workbook = Workbook()
sheet = workbook.active
# Write headers in the first row
for i, header in enumerate(headers, start=1):
sheet.cell(row=1, column=i, value=header)
self.completed_specimens = []
# Save the workbook
workbook.save(file_path)
if show_head:
print("continue_run_from_partial_xlsx:")
for i, row in enumerate(sheet.iter_rows(values_only=True)):
print(row)
if i == 3: # print the first 5 rows (0-indexed)
print("\n")
break
def add_data_to_excel_from_response(self, path_transcription, response, filename_without_extension, path_to_crop, path_to_content, path_to_helper, nt_in, nt_out):
wb = openpyxl.load_workbook(path_transcription)
sheet = wb.active
# find the next empty row
next_row = sheet.max_row + 1
if isinstance(response, str):
try:
response = json.loads(response)
except json.JSONDecodeError:
print(f"Failed to parse response: {response}")
return
# iterate over headers in the first row
for i, header in enumerate(sheet[1], start=1):
# check if header value is in response keys
if (header.value in response) and (header.value not in self.catalog_name_options): ####################### Catalog Number pre-defined
# check if the response value is a dictionary
if isinstance(response[header.value], dict):
# if it is a dictionary, extract the 'value' field
cell_value = response[header.value].get('value', '')
else:
# if it's not a dictionary, use it directly
cell_value = response[header.value]
try:
# write the value to the cell
sheet.cell(row=next_row, column=i, value=cell_value)
except:
sheet.cell(row=next_row, column=i, value=cell_value[0])
elif header.value in self.catalog_name_options:
# if self.prefix_removal:
# filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
# if self.suffix_removal:
# filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
# if self.catalog_numerical_only:
# filename_without_extension = self.remove_non_numbers(filename_without_extension)
sheet.cell(row=next_row, column=i, value=filename_without_extension)
elif header.value == "path_to_crop":
sheet.cell(row=next_row, column=i, value=path_to_crop)
elif header.value == "path_to_original":
if self.cfg['leafmachine']['use_RGB_label_images']:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
else:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(path_to_crop))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
elif header.value == "path_to_content":
sheet.cell(row=next_row, column=i, value=path_to_content)
elif header.value == "path_to_helper":
sheet.cell(row=next_row, column=i, value=path_to_helper)
elif header.value == "tokens_in":
sheet.cell(row=next_row, column=i, value=nt_in)
elif header.value == "tokens_out":
sheet.cell(row=next_row, column=i, value=nt_out)
# save the workbook
wb.save(path_transcription)
def has_API_key(self, val):
if val != '':
return True
else:
return False
def set_API_keys(self):
self.dir_home = os.path.dirname(os.path.dirname(__file__))
self.path_cfg_private = os.path.join(self.dir_home, 'PRIVATE_DATA.yaml')
self.cfg_private = get_cfg_from_full_path(self.path_cfg_private)
self.has_key_openai = self.has_API_key(self.cfg_private['openai']['OPENAI_API_KEY'])
self.has_key_azure_openai = self.has_API_key(self.cfg_private['openai_azure']['api_version'])
self.has_key_palm2 = self.has_API_key(self.cfg_private['google_palm']['google_palm_api'])
self.has_key_google_OCR = self.has_API_key(self.cfg_private['google_cloud']['path_json_file'])
if self.has_key_openai:
openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']
os.environ["OPENAI_API_KEY"] = self.cfg_private['openai']['OPENAI_API_KEY']
if self.has_key_azure_openai:
# os.environ["OPENAI_API_KEY"] = self.cfg_private['openai_azure']['openai_api_key']
self.llm = AzureChatOpenAI(
deployment_name='gpt-35-turbo',
openai_api_version=self.cfg_private['openai_azure']['api_version'],
openai_api_key=self.cfg_private['openai_azure']['openai_api_key'],
openai_api_base=self.cfg_private['openai_azure']['openai_api_base'],
openai_organization=self.cfg_private['openai_azure']['openai_organization'],
openai_api_type=self.cfg_private['openai_azure']['openai_api_type']
)
if self.has_key_google_OCR:
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = self.cfg_private['google_cloud']['path_json_file']
if self.has_key_palm2:
os.environ['PALM'] = self.cfg_private['google_palm']['google_palm_api']
palm.configure(api_key=os.environ['PALM'])
def initialize_embeddings(self):
'''Loading embedding search __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda")'''
self.Voucher_Vision_Embedding = VoucherVisionEmbedding(self.db_name, self.path_domain_knowledge, logger=self.logger, build_new_db=self.build_new_db)
def clean_catalog_number(self, data, filename_without_extension):
#Cleans up the catalog number in data if it's a dict
def modify_catalog_key(catalog_key, filename_without_extension, data):
# Helper function to apply modifications on catalog number
if catalog_key not in data:
new_data = {catalog_key: None}
data = {**new_data, **data}
if self.prefix_removal:
filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
if self.suffix_removal:
filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
if self.catalog_numerical_only:
filename_without_extension = self.remove_non_numbers(data[catalog_key])
data[catalog_key] = filename_without_extension
return data
if isinstance(data, dict):
if self.headers_used == 'HEADERS_v1_n22':
return modify_catalog_key("Catalog Number", filename_without_extension, data)
elif self.headers_used in ['HEADERS_v2_n26', 'CUSTOM']:
return modify_catalog_key("catalog_number", filename_without_extension, data)
else:
raise ValueError("Invalid headers used.")
else:
raise TypeError("Data is not of type dict.")
def write_json_to_file(self, filepath, data):
'''Writes dictionary data to a JSON file.'''
with open(filepath, 'w') as txt_file:
if isinstance(data, dict):
data = json.dumps(data, indent=4)
txt_file.write(data)
def create_null_json(self):
return {}
def remove_non_numbers(self, s):
return ''.join([char for char in s if char.isdigit()])
def create_null_row(self, filename_without_extension, path_to_crop, path_to_content, path_to_helper):
json_dict = {header: '' for header in self.headers}
for header, value in json_dict.items():
if header in self.catalog_name_options:
if self.prefix_removal:
json_dict[header] = filename_without_extension.replace(self.prefix_removal, "")
if self.suffix_removal:
json_dict[header] = filename_without_extension.replace(self.suffix_removal, "")
if self.catalog_numerical_only:
json_dict[header] = self.remove_non_numbers(json_dict[header])
elif header == "path_to_crop":
json_dict[header] = path_to_crop
elif header == "path_to_original":
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
json_dict[header] = path_to_original
elif header == "path_to_content":
json_dict[header] = path_to_content
elif header == "path_to_helper":
json_dict[header] = path_to_helper
return json_dict
def setup_GPT(self, prompt_version, gpt):
Catalog = PromptCatalog()
self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# if prompt_version == 'prompt_v1_verbose':
if self.is_predefined_prompt:
if self.use_domain_knowledge:
# Find a similar example from the domain knowledge
domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
similarity= self.Voucher_Vision_Embedding.get_similarity()
if prompt_version == 'prompt_v1_verbose':
prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose(OCR=self.OCR,domain_knowledge_example=domain_knowledge_example,similarity=similarity)
else:
if prompt_version == 'prompt_v1_verbose_noDomainKnowledge':
prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose_noDomainKnowledge(OCR=self.OCR)
elif prompt_version == 'prompt_v2_json_rules':
prompt, n_fields, xlsx_headers = Catalog.prompt_v2_json_rules(OCR=self.OCR)
else:
prompt, n_fields, xlsx_headers = Catalog.prompt_v2_custom(self.path_custom_prompts, OCR=self.OCR)
nt = num_tokens_from_string(prompt, "cl100k_base")
self.logger.info(f'Prompt token length --- {nt}')
MODEL, use_long_form = self.pick_model(gpt, nt)
self.logger.info(f'Waiting for {gpt} API call --- Using {MODEL}')
return MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt
# def setup_GPT(self, opt, gpt):
# if opt == 'dict':
# # Find a similar example from the domain knowledge
# domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
# similarity= self.Voucher_Vision_Embedding.get_similarity()
# self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# # prompt = PROMPT_UMICH_skeleton_all_asia_GPT4(self.OCR, domain_knowledge_example, similarity)
# prompt, n_fields, xlsx_headers =
# nt = num_tokens_from_string(prompt, "cl100k_base")
# self.logger.info(f'Prompt token length --- {nt}')
# MODEL, use_long_form = self.pick_model(gpt, nt)
# ### Direct GPT ###
# self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Content')
# return MODEL, prompt, use_long_form
# elif opt == 'helper':
# prompt = PROMPT_OCR_Organized_GPT4(self.OCR)
# nt = num_tokens_from_string(prompt, "cl100k_base")
# MODEL, use_long_form = self.pick_model(gpt, nt)
# self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# self.logger.info(f'Prompt token length --- {nt}')
# self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Helper')
# return MODEL, prompt, use_long_form
def use_chatGPT(self, is_azure, progress_report, gpt):
total_tokens_in = 0
total_tokens_out = 0
final_JSON_response = None
if progress_report is not None:
progress_report.set_n_batches(len(self.img_paths))
for i, path_to_crop in enumerate(self.img_paths):
if progress_report is not None:
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)
# Use Google Vision API to get OCR
# self.OCR = detect_text(path_to_crop)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')
if len(self.OCR) > 0:
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
self.overlay_image.save(jpg_file_path_OCR_helper)
# Setup Dict
MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt_in = self.setup_GPT(self.prompt_version, gpt)
if is_azure:
self.llm.deployment_name = MODEL
else:
self.llm = None
# Send OCR to chatGPT and return formatted dictonary
if use_long_form:
response_candidate = OCR_to_dict_16k(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = OCR_to_dict(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = None
nt_out = 0
total_tokens_in += nt_in
total_tokens_out += nt_out
final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
if response_candidate is not None:
final_JSON_response = final_JSON_response0
self.logger.info(f'Formatted JSON\n{final_JSON_response}')
self.logger.info(f'Finished {MODEL} API calls\n')
if progress_report is not None:
progress_report.reset_batch(f"Batch Complete")
try:
final_JSON_response = json.loads(final_JSON_response.strip('```').replace('json\n', '', 1).replace('json', '', 1))
except:
pass
return final_JSON_response, total_tokens_in, total_tokens_out
def use_PaLM(self, progress_report):
total_tokens_in = 0
total_tokens_out = 0
final_JSON_response = None
if progress_report is not None:
progress_report.set_n_batches(len(self.img_paths))
for i, path_to_crop in enumerate(self.img_paths):
if progress_report is not None:
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)
# Use Google Vision API to get OCR
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
if len(self.OCR) > 0:
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
self.overlay_image.save(jpg_file_path_OCR_helper)
# Send OCR to chatGPT and return formatted dictonary
response_candidate, nt_in = OCR_to_dict_PaLM(self.logger, self.OCR, self.prompt_version, self.Voucher_Vision_Embedding)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = None
nt_out = 0
total_tokens_in += nt_in
total_tokens_out += nt_out
final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
if response_candidate is not None:
final_JSON_response = final_JSON_response0
self.logger.info(f'Formatted JSON\n{final_JSON_response}')
self.logger.info(f'Finished PaLM 2 API calls\n')
if progress_report is not None:
progress_report.reset_batch(f"Batch Complete")
return final_JSON_response, total_tokens_in, total_tokens_out
'''
def use_falcon(self, progress_report):
for i, path_to_crop in enumerate(self.img_paths):
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
txt_file_path_helper = os.path.join(self.Dirs.transcription_ind_helper, filename_without_extension + '.json')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')
# Use Google Vision API to get OCR
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
if len(self.OCR) > 0:
self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")
# Send OCR to Falcon and return formatted dictionary
response = OCR_to_dict_Falcon(self.logger, self.OCR, self.Voucher_Vision_Embedding)
# response_helper = OCR_to_helper_Falcon(self.logger, OCR) # Assuming you have a similar helper function for Falcon
response_helper = None
self.logger.info(f'Finished Falcon API calls\n')
else:
response = None
if (response is not None) and (response_helper is not None):
# Save transcriptions to json files
self.write_json_to_file(txt_file_path, response)
# self.write_json_to_file(txt_file_path_helper, response_helper)
# add to the xlsx file
self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, txt_file_path_helper)
progress_report.reset_batch()
'''
def generate_paths(self, path_to_crop, i):
filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
txt_file_path_OCR = os.path.join(self.Dirs.transcription_ind_OCR, filename_without_extension + '.json')
txt_file_path_OCR_bounds = os.path.join(self.Dirs.transcription_ind_OCR_bounds, filename_without_extension + '.json')
jpg_file_path_OCR_helper = os.path.join(self.Dirs.transcription_ind_OCR_helper, filename_without_extension + '.jpg')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')
return filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper
def save_json_and_xlsx(self, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out):
if response is None:
response = self.create_null_json()
self.write_json_to_file(txt_file_path, response)
# Then add the null info to the spreadsheet
response_null = self.create_null_row(filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper)
self.add_data_to_excel_from_response(self.path_transcription, response_null, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in=0, nt_out=0)
### Set completed JSON
else:
response = self.clean_catalog_number(response, filename_without_extension)
self.write_json_to_file(txt_file_path, response)
# add to the xlsx file
self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
return response
def process_specimen_batch(self, progress_report):
try:
if self.has_key:
if self.model_name:
final_json_response, total_tokens_in, total_tokens_out = self.use_chatGPT(self.is_azure, progress_report, self.model_name)
else:
final_json_response, total_tokens_in, total_tokens_out = self.use_PaLM(progress_report)
return final_json_response, total_tokens_in, total_tokens_out
else:
self.logger.info(f'No API key found for {self.version_name}')
raise Exception(f"No API key found for {self.version_name}")
except:
if progress_report is not None:
progress_report.reset_batch(f"Batch Failed")
self.logger.error("LLM call failed. Ending batch. process_specimen_batch()")
for handler in self.logger.handlers[:]:
handler.close()
self.logger.removeHandler(handler)
raise
def process_specimen_batch_OCR_test(self, path_to_crop):
for img_filename in os.listdir(path_to_crop):
img_path = os.path.join(path_to_crop, img_filename)
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(img_path)
def space_saver(cfg, Dirs, logger):
dir_out = cfg['leafmachine']['project']['dir_output']
run_name = Dirs.run_name
path_project = os.path.join(dir_out, run_name)
if cfg['leafmachine']['project']['delete_temps_keep_VVE']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting temporary files. Keeping files required for VoucherVisionEditor.")
delete_dirs = ['Archival_Components', 'Config_File']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
elif cfg['leafmachine']['project']['delete_all_temps']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting ALL temporary files!")
delete_dirs = ['Archival_Components', 'Config_File', 'Original_Images', 'Cropped_Images']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
# Delete the transctiption folder, but keep the xlsx
transcription_path = os.path.join(path_project, 'Transcription')
if os.path.exists(transcription_path):
for item in os.listdir(transcription_path):
item_path = os.path.join(transcription_path, item)
if os.path.isdir(item_path): # if the item is a directory
if os.path.exists(item_path):
shutil.rmtree(item_path) # delete the directory