Spaces:
Running
Running
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) | |
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- | |
# Example usage: python train.py --data xView.yaml | |
# parent | |
# βββ yolov5 | |
# βββ datasets | |
# βββ xView β downloads here (20.7 GB) | |
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | |
path: ../datasets/xView # dataset root dir | |
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images | |
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images | |
# Classes | |
nc: 60 # number of classes | |
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', | |
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', | |
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', | |
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', | |
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', | |
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', | |
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', | |
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', | |
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names | |
# Download script/URL (optional) --------------------------------------------------------------------------------------- | |
download: | | |
import json | |
import os | |
from pathlib import Path | |
import numpy as np | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from utils.datasets import autosplit | |
from utils.general import download, xyxy2xywhn | |
def convert_labels(fname=Path('xView/xView_train.geojson')): | |
# Convert xView geoJSON labels to YOLO format | |
path = fname.parent | |
with open(fname) as f: | |
print(f'Loading {fname}...') | |
data = json.load(f) | |
# Make dirs | |
labels = Path(path / 'labels' / 'train') | |
os.system(f'rm -rf {labels}') | |
labels.mkdir(parents=True, exist_ok=True) | |
# xView classes 11-94 to 0-59 | |
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, | |
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, | |
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, | |
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] | |
shapes = {} | |
for feature in tqdm(data['features'], desc=f'Converting {fname}'): | |
p = feature['properties'] | |
if p['bounds_imcoords']: | |
id = p['image_id'] | |
file = path / 'train_images' / id | |
if file.exists(): # 1395.tif missing | |
try: | |
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) | |
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' | |
cls = p['type_id'] | |
cls = xview_class2index[int(cls)] # xView class to 0-60 | |
assert 59 >= cls >= 0, f'incorrect class index {cls}' | |
# Write YOLO label | |
if id not in shapes: | |
shapes[id] = Image.open(file).size | |
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) | |
with open((labels / id).with_suffix('.txt'), 'a') as f: | |
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt | |
except Exception as e: | |
print(f'WARNING: skipping one label for {file}: {e}') | |
# Download manually from https://challenge.xviewdataset.org | |
dir = Path(yaml['path']) # dataset root dir | |
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels | |
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images | |
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) | |
# download(urls, dir=dir, delete=False) | |
# Convert labels | |
convert_labels(dir / 'xView_train.geojson') | |
# Move images | |
images = Path(dir / 'images') | |
images.mkdir(parents=True, exist_ok=True) | |
Path(dir / 'train_images').rename(dir / 'images' / 'train') | |
Path(dir / 'val_images').rename(dir / 'images' / 'val') | |
# Split | |
autosplit(dir / 'images' / 'train') | |