VoucherVision / vouchervision /VoucherVision_Config_Builder.py
phyloforfun's picture
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
aedd7d9
raw
history blame
27.6 kB
import os, yaml, platform, traceback
from vouchervision.LeafMachine2_Config_Builder import get_default_download_folder, write_config_file
from vouchervision.general_utils import validate_dir, print_main_fail
from vouchervision.vouchervision_main import voucher_vision
from general_utils import get_cfg_from_full_path
def build_VV_config(loaded_cfg=None):
if loaded_cfg is None:
#############################################
############ Set common defaults ############
#############################################
# Changing the values below will set new
# default values each time you open the
# VoucherVision user interface
#############################################
#############################################
#############################################
dir_home = os.path.dirname(os.path.dirname(__file__))
run_name = 'test'
# dir_images_local = 'D:/Dropbox/LM2_Env/Image_Datasets/GBIF_BroadSample_3SppPerFamily1'
dir_images_local = os.path.join(dir_home,'demo','demo_images')
# The default output location is the computer's "Downloads" folder
# You can set dir_output directly by typing the folder path,
# OR you can uncomment the line "dir_output = default_output_folder"
# to have VoucherVision save to the Downloads folder by default
default_output_folder = get_default_download_folder()
dir_output = default_output_folder
# dir_output = 'D:/D_Desktop/LM2'
prefix_removal = '' #'MICH-V-'
suffix_removal = ''
catalog_numerical_only = False
save_cropped_annotations = ['label','barcode']
do_use_trOCR = False
OCR_option = 'hand'
check_for_illegal_filenames = False
LLM_version_user = 'Azure GPT 3.5 Instruct' #'Azure GPT 4 Turbo 1106-preview'
prompt_version = 'version_5.yaml' # from ["Version 1", "Version 1 No Domain Knowledge", "Version 2"]
use_LeafMachine2_collage_images = False # Use LeafMachine2 collage images
do_create_OCR_helper_image = True
batch_size = 500
num_workers = 8
path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
#############################################
#############################################
########## DO NOT EDIT BELOW HERE ###########
#############################################
#############################################
return assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, do_use_trOCR, OCR_option, save_cropped_annotations,
check_for_illegal_filenames, use_domain_knowledge=False)
else:
dir_home = os.path.dirname(os.path.dirname(__file__))
run_name = loaded_cfg['leafmachine']['project']['run_name']
dir_images_local = loaded_cfg['leafmachine']['project']['dir_images_local']
default_output_folder = loaded_cfg['leafmachine']['project']['dir_output']
dir_output = loaded_cfg['leafmachine']['project']['dir_output']
prefix_removal = loaded_cfg['leafmachine']['project']['prefix_removal']
suffix_removal = loaded_cfg['leafmachine']['project']['suffix_removal']
catalog_numerical_only = loaded_cfg['leafmachine']['project']['catalog_numerical_only']
do_use_trOCR = loaded_cfg['leafmachine']['project']['do_use_trOCR']
OCR_option = loaded_cfg['leafmachine']['project']['OCR_option']
LLM_version_user = loaded_cfg['leafmachine']['LLM_version']
prompt_version = loaded_cfg['leafmachine']['project']['prompt_version']
use_LeafMachine2_collage_images = loaded_cfg['leafmachine']['use_RGB_label_images']
do_create_OCR_helper_image = loaded_cfg['leafmachine']['do_create_OCR_helper_image']
batch_size = loaded_cfg['leafmachine']['project']['batch_size']
num_workers = loaded_cfg['leafmachine']['project']['num_workers']
path_domain_knowledge = loaded_cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
save_cropped_annotations = loaded_cfg['leafmachine']['cropped_components']['save_cropped_annotations']
check_for_illegal_filenames = loaded_cfg['leafmachine']['do']['check_for_illegal_filenames']
return assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, do_use_trOCR, OCR_option, save_cropped_annotations,
check_for_illegal_filenames, use_domain_knowledge=False)
def assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,num_workers,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image_user, do_use_trOCR, OCR_option, save_cropped_annotations,
check_for_illegal_filenames, use_domain_knowledge=False):
# Initialize the base structure
config_data = {
'leafmachine': {}
}
# Modular sections to be added to 'leafmachine'
do_section = {
'check_for_illegal_filenames': check_for_illegal_filenames,
'check_for_corrupt_images_make_vertical': True,
}
print_section = {
'verbose': True,
'optional_warnings': True
}
logging_section = {
'log_level': None
}
project_section = {
'dir_output': dir_output,
'run_name': run_name,
'image_location': 'local',
'batch_size': batch_size,
'num_workers': num_workers,
'dir_images_local': dir_images_local,
'continue_run_from_partial_xlsx': '',
'prefix_removal': prefix_removal,
'suffix_removal': suffix_removal,
'catalog_numerical_only': catalog_numerical_only,
'use_domain_knowledge': use_domain_knowledge,
'embeddings_database_name': embeddings_database_name,
'build_new_embeddings_database': False,
'path_to_domain_knowledge_xlsx': path_domain_knowledge,
'prompt_version': prompt_version,
'delete_all_temps': False,
'delete_temps_keep_VVE': False,
'do_use_trOCR': do_use_trOCR,
'OCR_option': OCR_option,
}
modules_section = {
'specimen_crop': True
}
LLM_version = LLM_version_user
use_RGB_label_images = use_LeafMachine2_collage_images # Use LeafMachine2 collage images
do_create_OCR_helper_image = do_create_OCR_helper_image_user
cropped_components_section = {
'do_save_cropped_annotations': True,
'save_cropped_annotations': save_cropped_annotations,
'save_per_image': False,
'save_per_annotation_class': True,
'binarize_labels': False,
'binarize_labels_skeletonize': False
}
data_section = {
'save_json_rulers': False,
'save_json_measurements': False,
'save_individual_csv_files_rulers': False,
'save_individual_csv_files_measurements': False,
'save_individual_csv_files_landmarks': False,
'save_individual_efd_files': False,
'include_darwin_core_data_from_combined_file': False,
'do_apply_conversion_factor': False
}
overlay_section = {
'save_overlay_to_pdf': False,
'save_overlay_to_jpgs': True,
'overlay_dpi': 300, # Between 100 to 300
'overlay_background_color': 'black', # Either 'white' or 'black'
'show_archival_detections': True,
'show_plant_detections': True,
'show_segmentations': True,
'show_landmarks': True,
'ignore_archival_detections_classes': [],
'ignore_plant_detections_classes': ['leaf_whole', 'specimen'], # Could also include 'leaf_partial' and others if needed
'ignore_landmark_classes': [],
'line_width_archival': 12, # Previous value given was 2
'line_width_plant': 12, # Previous value given was 6
'line_width_seg': 12, # 12 is specified as "thick"
'line_width_efd': 12, # 3 is specified as "thick" but 12 is given here
'alpha_transparency_archival': 0.3,
'alpha_transparency_plant': 0,
'alpha_transparency_seg_whole_leaf': 0.4,
'alpha_transparency_seg_partial_leaf': 0.3
}
archival_component_detector_section = {
'detector_type': 'Archival_Detector',
'detector_version': 'PREP_final',
'detector_iteration': 'PREP_final',
'detector_weights': 'best.pt',
'minimum_confidence_threshold': 0.5, # Default is 0.5
'do_save_prediction_overlay_images': True,
'ignore_objects_for_overlay': []
}
# Add the sections to the 'leafmachine' key
config_data['leafmachine']['do'] = do_section
config_data['leafmachine']['print'] = print_section
config_data['leafmachine']['logging'] = logging_section
config_data['leafmachine']['project'] = project_section
config_data['leafmachine']['LLM_version'] = LLM_version
config_data['leafmachine']['use_RGB_label_images'] = use_RGB_label_images
config_data['leafmachine']['do_create_OCR_helper_image'] = do_create_OCR_helper_image
config_data['leafmachine']['cropped_components'] = cropped_components_section
config_data['leafmachine']['modules'] = modules_section
config_data['leafmachine']['data'] = data_section
config_data['leafmachine']['overlay'] = overlay_section
config_data['leafmachine']['archival_component_detector'] = archival_component_detector_section
return config_data, dir_home
def build_api_tests(api):
dir_home = os.path.dirname(os.path.dirname(__file__))
path_to_configs = os.path.join(dir_home,'demo','demo_configs')
dir_home = os.path.dirname(os.path.dirname(__file__))
dir_images_local = os.path.join(dir_home,'demo','demo_images')
validate_dir(os.path.join(dir_home,'demo','demo_configs'))
path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
prefix_removal = ''
suffix_removal = ''
catalog_numerical_only = False
batch_size = 500
do_create_OCR_helper_image = False
# ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"]
# LLM_version_user = 'Azure GPT 4'
# ### Option 2: False of [False, True]
# use_LeafMachine2_collage_images = False
# ### Option 3: False of [False, True]
# use_domain_knowledge = True
test_results = {}
if api == 'openai':
OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options()
elif api == 'palm':
OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options()
elif api == 'azure_openai':
OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options()
else:
raise
ind = -1
ind_opt1 = -1
ind_opt2 = -1
ind_opt3 = -1
for opt1 in OPT1:
ind_opt1+= 1
for opt2 in OPT2:
ind_opt2 += 1
for opt3 in OPT3:
ind += 1
ind_opt3 += 1
LLM_version_user = opt1
use_LeafMachine2_collage_images = opt2
prompt_version = opt3
filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml"
run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}"
dir_output = os.path.join(dir_home,'demo','demo_output','run_name')
validate_dir(dir_output)
config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version,do_create_OCR_helper_image)
write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename)
test_results[run_name] = False
ind_opt3 = -1
ind_opt2 = -1
ind_opt1 = -1
return dir_home, path_to_configs, test_results
def build_demo_tests(llm_version):
dir_home = os.path.dirname(os.path.dirname(__file__))
path_to_configs = os.path.join(dir_home,'demo','demo_configs')
dir_home = os.path.dirname(os.path.dirname(__file__))
dir_images_local = os.path.join(dir_home,'demo','demo_images')
validate_dir(os.path.join(dir_home,'demo','demo_configs'))
path_domain_knowledge = os.path.join(dir_home,'domain_knowledge','SLTP_UM_AllAsiaMinimalInRegion.xlsx')
embeddings_database_name = os.path.splitext(os.path.basename(path_domain_knowledge))[0]
prefix_removal = ''
suffix_removal = ''
catalog_numerical_only = False
batch_size = 500
do_create_OCR_helper_image = False
# ### Option 1: "GPT 4" of ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5", "PaLM 2"]
# LLM_version_user = 'Azure GPT 4'
# ### Option 2: False of [False, True]
# use_LeafMachine2_collage_images = False
# ### Option 3: False of [False, True]
# use_domain_knowledge = True
test_results = {}
if llm_version == 'gpt':
OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
elif llm_version == 'palm':
OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
else:
raise
ind = -1
ind_opt1 = -1
ind_opt2 = -1
ind_opt3 = -1
for opt1 in OPT1:
ind_opt1+= 1
for opt2 in OPT2:
ind_opt2 += 1
for opt3 in OPT3:
ind += 1
ind_opt3 += 1
LLM_version_user = opt1
use_LeafMachine2_collage_images = opt2
prompt_version = opt3
filename = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}.yaml"
run_name = f"{ind}__OPT1-{ind_opt1}__OPT2-{ind_opt2}__OPT3-{ind_opt3}"
dir_output = os.path.join(dir_home,'demo','demo_output','run_name')
validate_dir(dir_output)
if llm_version == 'gpt':
if prompt_version in ['Version 1']:
config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True)
else:
config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image)
elif llm_version == 'palm':
if prompt_version in ['Version 1 PaLM 2']:
config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image, use_domain_knowledge=True)
else:
config_data, dir_home = assemble_config(dir_home, run_name, dir_images_local,dir_output,
prefix_removal,suffix_removal,catalog_numerical_only,LLM_version_user,batch_size,
path_domain_knowledge,embeddings_database_name,use_LeafMachine2_collage_images,
prompt_version, do_create_OCR_helper_image)
write_config_file(config_data, os.path.join(dir_home,'demo','demo_configs'),filename=filename)
test_results[run_name] = False
ind_opt3 = -1
ind_opt2 = -1
ind_opt1 = -1
return dir_home, path_to_configs, test_results
class TestOptionsGPT:
OPT1 = ["gpt-4-1106-preview","GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5"]
OPT2 = [False, True]
OPT3 = ["Version 1", "Version 1 No Domain Knowledge", "Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsPalm:
OPT1 = ["PaLM 2"]
OPT2 = [False, True]
OPT3 = ["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 6
class TestOptionsAPI_openai:
OPT1 = ["GPT 3.5"]
OPT2 = [False]
OPT3 = ["Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsAPI_azure_openai:
OPT1 = ["Azure GPT 3.5"]
OPT2 = [False]
OPT3 = ["Version 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 24
class TestOptionsAPI_palm:
OPT1 = ["PaLM 2"]
OPT2 = [False]
OPT3 = ["Version 2 PaLM 2"]
@classmethod
def get_options(cls):
return cls.OPT1, cls.OPT2, cls.OPT3
@classmethod
def get_length(cls):
return 6
def run_demo_tests_GPT(progress_report):
dir_home, path_to_configs, test_results = build_demo_tests('gpt')
progress_report.set_n_overall(len(test_results.items()))
JSON_results = {}
for ind, (cfg, result) in enumerate(test_results.items()):
OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
if opt1_readable in ["Azure GPT 4", "Azure GPT 3.5"]:
api_version = 'gpt-azure'
elif opt1_readable in ["GPT 4", "GPT 3.5"]:
api_version = 'gpt'
else:
raise
opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# Construct the human-readable test name
human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
get_n_overall = progress_report.get_n_overall()
progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}")
print_main_fail(f"Starting validation test: {human_readable_name}")
cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr'):
try:
last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, progress_report=progress_report, test_ind=int(test_ind))
test_results[cfg] = True
JSON_results[ind] = last_JSON_response
except Exception as e:
JSON_results[ind] = None
test_results[cfg] = False
print(f"An exception occurred: {e}")
traceback.print_exc() # This will print the full traceback
else:
fail_response = ''
if not check_API_key(dir_home, 'google-vision-ocr'):
fail_response += "No API key found for Google Vision OCR"
if not check_API_key(dir_home, api_version):
fail_response += f" + No API key found for {api_version}"
test_results[cfg] = False
JSON_results[ind] = fail_response
print(f"No API key found for {fail_response}")
return test_results, JSON_results
def run_demo_tests_Palm(progress_report):
api_version = 'palm'
dir_home, path_to_configs, test_results = build_demo_tests('palm')
progress_report.set_n_overall(len(test_results.items()))
JSON_results = {}
for ind, (cfg, result) in enumerate(test_results.items()):
OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge"
# Construct the human-readable test name
human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
get_n_overall = progress_report.get_n_overall()
progress_report.update_overall(f"Test {int(test_ind)+1} of {get_n_overall} --- Validating {human_readable_name}")
print_main_fail(f"Starting validation test: {human_readable_name}")
cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
if check_API_key(dir_home, api_version) and check_API_key(dir_home, 'google-vision-ocr') :
try:
last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, cfg_test=None, path_custom_prompts=None, progress_report=progress_report, test_ind=int(test_ind))
test_results[cfg] = True
JSON_results[ind] = last_JSON_response
except Exception as e:
test_results[cfg] = False
JSON_results[ind] = None
print(f"An exception occurred: {e}")
traceback.print_exc() # This will print the full traceback
else:
fail_response = ''
if not check_API_key(dir_home, 'google-vision-ocr'):
fail_response += "No API key found for Google Vision OCR"
if not check_API_key(dir_home, api_version):
fail_response += f" + No API key found for {api_version}"
test_results[cfg] = False
JSON_results[ind] = fail_response
print(f"No API key found for {fail_response}")
return test_results, JSON_results
def run_api_tests(api):
try:
dir_home, path_to_configs, test_results = build_api_tests(api)
JSON_results = {}
for ind, (cfg, result) in enumerate(test_results.items()):
if api == 'openai':
OPT1, OPT2, OPT3 = TestOptionsAPI_openai.get_options()
elif 'azure_openai':
OPT1, OPT2, OPT3 = TestOptionsAPI_azure_openai.get_options()
elif 'palm':
OPT1, OPT2, OPT3 = TestOptionsAPI_palm.get_options()
test_ind, ind_opt1, ind_opt2, ind_opt3 = cfg.split('__')
opt1_readable = OPT1[int(ind_opt1.split('-')[1])]
opt2_readable = "Use LeafMachine2 for Collage Images" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2 for Collage Images"
opt3_readable = f"Prompt {OPT3[int(ind_opt3.split('-')[1])]}"
# opt3_readable = "Use Domain Knowledge" if OPT3[int(ind_opt3.split('-')[1])] else "Don't use Domain Knowledge"
# Construct the human-readable test name
human_readable_name = f"{opt1_readable}, {opt2_readable}, {opt3_readable}"
print_main_fail(f"Starting validation test: {human_readable_name}")
cfg_file_path = os.path.join(path_to_configs,'.'.join([cfg,'yaml']))
if check_API_key(dir_home, api) and check_API_key(dir_home, 'google-vision-ocr') :
try:
last_JSON_response, total_cost = voucher_vision(cfg_file_path, dir_home, None,path_custom_prompts=None , cfg_test=None, progress_report=None, test_ind=int(test_ind))
test_results[cfg] = True
JSON_results[ind] = last_JSON_response
return True
except Exception as e:
print(e)
return False
else:
return False
except Exception as e:
print(e)
return False
def has_API_key(val):
if val != '':
return True
else:
return False
def check_if_usable(is_hf): ############################################################################################################## TODO fix
if is_hf:
return True ########### needs actual logic. borrow from another function to not repeat this
else:
dir_home = os.path.dirname(os.path.dirname(__file__))
path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
cfg_private = get_cfg_from_full_path(path_cfg_private)
has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY'])
has_key_azure_openai = has_API_key(cfg_private['openai_azure']['api_version'])
has_key_palm2 = has_API_key(cfg_private['google_palm']['google_palm_api'])
has_key_google_OCR = has_API_key(cfg_private['google_cloud']['path_json_file'])
if has_key_google_OCR and (has_key_azure_openai or has_key_openai or has_key_palm2):
return True
else:
return False
def check_API_key(dir_home, api_version):
dir_home = os.path.dirname(os.path.dirname(__file__))
path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
cfg_private = get_cfg_from_full_path(path_cfg_private)
has_key_openai = has_API_key(cfg_private['openai']['OPENAI_API_KEY'])
has_key_azure_openai = has_API_key(cfg_private['openai_azure']['api_version'])
has_key_palm2 = has_API_key(cfg_private['google_palm']['google_palm_api'])
has_key_google_OCR = has_API_key(cfg_private['google_cloud']['path_json_file'])
if api_version == 'palm' and has_key_palm2:
return True
elif api_version in ['gpt','openai'] and has_key_openai:
return True
elif api_version in ['gpt-azure', 'azure_openai'] and has_key_azure_openai:
return True
elif api_version == 'google-vision-ocr' and has_key_google_OCR:
return True
else:
return False