Spaces:
Running
Running
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
e91ac58
import json, torch, transformers, gc | |
from transformers import BitsAndBytesConfig | |
from langchain.output_parsers import RetryWithErrorOutputParser | |
from langchain.prompts import PromptTemplate | |
from langchain_core.output_parsers import JsonOutputParser | |
from huggingface_hub import hf_hub_download | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
import asyncio | |
from utils_LLM import validate_and_align_JSON_keys_with_template, count_tokens, validate_taxonomy_WFO, validate_coordinates_here, remove_colons_and_double_apostrophes, SystemLoadMonitor | |
''' | |
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines | |
''' | |
from torch.utils.data import Dataset, DataLoader | |
# Dataset for handling prompts | |
class PromptDataset(Dataset): | |
def __init__(self, prompts): | |
self.prompts = prompts | |
def __len__(self): | |
return len(self.prompts) | |
def __getitem__(self, idx): | |
return self.prompts[idx] | |
class LocalMistralHandler: | |
RETRY_DELAY = 2 # Wait 2 seconds before retrying | |
MAX_RETRIES = 5 # Maximum number of retries | |
STARTING_TEMP = 0.1 | |
TOKENIZER_NAME = None | |
VENDOR = 'mistral' | |
MAX_GPU_MONITORING_INTERVAL = 2 # seconds | |
def __init__(self, logger, model_name, JSON_dict_structure): | |
self.logger = logger | |
self.has_GPU = torch.cuda.is_available() | |
self.monitor = SystemLoadMonitor(logger) | |
self.model_name = model_name | |
self.model_id = f"mistralai/{self.model_name}" | |
name_parts = self.model_name.split('-') | |
self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json") | |
self.JSON_dict_structure = JSON_dict_structure | |
self.starting_temp = float(self.STARTING_TEMP) | |
self.temp_increment = float(0.2) | |
self.adjust_temp = self.starting_temp | |
system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user." | |
template = """ | |
<s>[INST]{}[/INST]</s> | |
[INST]{}[/INST] | |
""".format(system_prompt, "{query}") | |
# Create a prompt from the template so we can use it with Langchain | |
self.prompt = PromptTemplate(template=template, input_variables=["query"]) | |
# Set up a parser | |
self.parser = JsonOutputParser() | |
self._set_config() | |
def _clear_VRAM(self): | |
# Clear CUDA cache if it's being used | |
if self.has_GPU: | |
self.local_model = None | |
self.local_model_pipeline = None | |
del self.local_model | |
del self.local_model_pipeline | |
gc.collect() # Explicitly invoke garbage collector | |
torch.cuda.empty_cache() | |
else: | |
self.local_model_pipeline = None | |
self.local_model = None | |
del self.local_model_pipeline | |
del self.local_model | |
gc.collect() # Explicitly invoke garbage collector | |
def _set_config(self): | |
self._clear_VRAM() | |
self.config = {'max_new_tokens': 1024, | |
'temperature': self.starting_temp, | |
'seed': 2023, | |
'top_p': 1, | |
'top_k': 40, | |
'do_sample': True, | |
'n_ctx':4096, | |
# Activate 4-bit precision base model loading | |
'use_4bit': True, | |
# Compute dtype for 4-bit base models | |
'bnb_4bit_compute_dtype': "float16", | |
# Quantization type (fp4 or nf4) | |
'bnb_4bit_quant_type': "nf4", | |
# Activate nested quantization for 4-bit base models (double quantization) | |
'use_nested_quant': False, | |
} | |
compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') ) | |
self.bnb_config = BitsAndBytesConfig( | |
load_in_4bit=self.config.get('use_4bit'), | |
bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'), | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=self.config.get('use_nested_quant'), | |
) | |
# Check GPU compatibility with bfloat16 | |
if compute_dtype == torch.float16 and self.config.get('use_4bit'): | |
major, _ = torch.cuda.get_device_capability() | |
if major >= 8: | |
# print("=" * 80) | |
# print("Your GPU supports bfloat16: accelerate training with bf16=True") | |
# print("=" * 80) | |
self.b_float_opt = torch.bfloat16 | |
else: | |
self.b_float_opt = torch.float16 | |
self._build_model_chain_parser() | |
def _adjust_config(self): | |
self.logger.info(f'Incrementing temperature and reloading model') | |
self._clear_VRAM() | |
self.adjust_temp += self.temp_increment | |
self.config['temperature'] = self.adjust_temp | |
self._build_model_chain_parser() | |
def _build_model_chain_parser(self): | |
self.local_model_pipeline = transformers.pipeline("text-generation", | |
model=self.model_id, | |
max_new_tokens=self.config.get('max_new_tokens'), | |
temperature=self.config.get('temperature'), | |
top_k=self.config.get('top_k'), | |
top_p=self.config.get('top_p'), | |
do_sample=self.config.get('do_sample'), | |
model_kwargs={"torch_dtype": self.b_float_opt, | |
"load_in_4bit": True, | |
"quantization_config": self.bnb_config}) | |
self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline) | |
# Set up the retry parser with the runnable | |
self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES) | |
# Create an llm chain with LLM and prompt | |
self.chain = self.prompt | self.local_model | |
def call_llm_local_MistralAI(self, prompts, batch_size=2): | |
# Wrap the async call with asyncio.run | |
dataset = PromptDataset(prompts) | |
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False) | |
all_results = asyncio.run(self._process_all_batches(data_loader)) | |
if self.adjust_temp != self.starting_temp: | |
self._set_config() | |
return all_results | |
async def _process_batch(self, batch_prompts): | |
# Create and manage async tasks for each prompt in the batch | |
tasks = [self._process_single_prompt(prompt) for prompt in batch_prompts] | |
return await asyncio.gather(*tasks) | |
async def _process_all_batches(self, data_loader): | |
# Process all batches asynchronously | |
results = [] | |
for batch_prompts in data_loader: | |
batch_results = await self._process_batch(batch_prompts) | |
results.extend(batch_results) | |
return results | |
async def _process_single_prompt(self, prompt_template): | |
self.monitor.start_monitoring_usage() | |
nt_in = nt_out = 0 | |
ind = 0 | |
while ind < self.MAX_RETRIES: | |
ind += 1 | |
results = self.chain.invoke({"query": prompt_template}) | |
output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template) | |
if output is None: | |
self.logger.error(f'Failed to extract JSON from:\n{results}') | |
self._adjust_config() | |
del results | |
else: | |
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME) | |
nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME) | |
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure) | |
output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) | |
output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) | |
self.logger.info(f"Formatted JSON:\n{json.dumps(output, indent=4)}") | |
del results | |
self.monitor.stop_monitoring_report_usage() | |
return output, nt_in, nt_out, WFO_record, GEO_record | |
self.monitor.stop_monitoring_report_usage() | |
self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts") | |
return None, nt_in, nt_out, None, None |