VoucherVision / vouchervision /OCR_google_cloud_vision.py
phyloforfun's picture
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
a1e2ec1
raw
history blame
34.8 kB
import os, io, sys, inspect, statistics, json
from statistics import mean
# from google.cloud import vision, storage
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
from PIL import Image, ImageDraw, ImageFont
import colorsys
from tqdm import tqdm
from google.oauth2 import service_account
currentdir = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
'''
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
'''
class OCRGoogle:
BBOX_COLOR = "black"
def __init__(self, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
self.is_hf = is_hf
self.path = path
self.cfg = cfg
self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
# Initialize TrOCR components
self.trOCR_model_version = trOCR_model_version
self.trOCR_processor = trOCR_processor
self.trOCR_model = trOCR_model
self.device = device
self.hand_cleaned_text = None
self.hand_organized_text = None
self.hand_bounds = None
self.hand_bounds_word = None
self.hand_bounds_flat = None
self.hand_text_to_box_mapping = None
self.hand_height = None
self.hand_confidences = None
self.hand_characters = None
self.normal_cleaned_text = None
self.normal_organized_text = None
self.normal_bounds = None
self.normal_bounds_word = None
self.normal_text_to_box_mapping = None
self.normal_bounds_flat = None
self.normal_height = None
self.normal_confidences = None
self.normal_characters = None
self.trOCR_texts = None
self.trOCR_text_to_box_mapping = None
self.trOCR_bounds_flat = None
self.trOCR_height = None
self.trOCR_confidences = None
self.trOCR_characters = None
self.set_client()
def set_client(self):
if self.is_hf:
service_account_json_str = os.getenv('google_service_account_json')
if not service_account_json_str:
print("Service account JSON not found in environment variables.")
return False
# Convert JSON string to a dictionary
service_account_info = json.loads(service_account_json_str)
# Create credentials from the service account info
credentials = service_account.Credentials.from_service_account_info(service_account_info)
# Initialize the client with the credentials
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=credentials)
self.client = vision.ImageAnnotatorClient(credentials=credentials)
else:
self.client_beta = vision_beta.ImageAnnotatorClient()
self.client = vision.ImageAnnotatorClient()
def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
CONFIDENCES = 0.80
MAX_NEW_TOKENS = 50
self.OCR_JSON_to_file = {}
if not do_use_trOCR:
if self.OCR_option in ['normal',]:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
return f"Google_OCR_Standard:\n{self.normal_organized_text}"
if self.OCR_option in ['hand',]:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
return f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
if self.OCR_option in ['both',]:
logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
else:
logger.info(f'Supplementing with trOCR')
self.trOCR_texts = []
original_image = Image.open(self.path).convert("RGB")
if self.OCR_option in ['normal',]:
available_bounds = self.normal_bounds_word
elif self.OCR_option in ['hand',]:
available_bounds = self.hand_bounds_word
elif self.OCR_option in ['both',]:
available_bounds = self.hand_bounds_word
else:
raise
text_to_box_mapping = []
characters = []
height = []
confidences = []
for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
vertices = bound["vertices"]
left = min([v["x"] for v in vertices])
top = min([v["y"] for v in vertices])
right = max([v["x"] for v in vertices])
bottom = max([v["y"] for v in vertices])
# Crop image based on Google's bounding box
cropped_image = original_image.crop((left, top, right, bottom))
pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values
# Move pixel values to the appropriate device
pixel_values = pixel_values.to(self.device)
generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
self.trOCR_texts.append(extracted_text)
# For plotting
word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
num_symbols = len(extracted_text)
Yw = max(vertex.get('y') for vertex in vertices)
Yo = Yw - min(vertex.get('y') for vertex in vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
height.append(H)
map_dict = {
"vertices": vertices,
"text": extracted_text # Use the text extracted by trOCR
}
text_to_box_mapping.append(map_dict)
characters.append(extracted_text)
confidences.append(CONFIDENCES)
median_height = statistics.median(height) if height else 0
median_heights = [median_height * 1.5] * len(characters)
self.trOCR_texts = ' '.join(self.trOCR_texts)
self.trOCR_text_to_box_mapping = text_to_box_mapping
self.trOCR_bounds_flat = available_bounds
self.trOCR_height = median_heights
self.trOCR_confidences = confidences
self.trOCR_characters = characters
if self.OCR_option in ['normal',]:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
if self.OCR_option in ['hand',]:
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
return f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
if self.OCR_option in ['both',]:
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
else:
raise
@staticmethod
def confidence_to_color(confidence):
hue = (confidence - 0.5) * 120 / 0.5
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
return (int(r*255), int(g*255), int(b*255))
def render_text_on_black_image(self, option):
bounds_flat = getattr(self, f'{option}_bounds_flat', [])
heights = getattr(self, f'{option}_height', [])
confidences = getattr(self, f'{option}_confidences', [])
characters = getattr(self, f'{option}_characters', [])
original_image = Image.open(self.path)
width, height = original_image.size
black_image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(black_image)
for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
font_size = int(char_height)
font = ImageFont.load_default().font_variant(size=font_size)
if option == 'trOCR':
color = (0, 170, 255)
else:
color = OCRGoogle.confidence_to_color(confidence)
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
draw.text(position, character, fill=color, font=font)
return black_image
def merge_images(self, image1, image2):
width1, height1 = image1.size
width2, height2 = image2.size
merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
merged_image.paste(image1, (0, 0))
merged_image.paste(image2, (width1, 0))
return merged_image
def draw_boxes(self, option):
bounds = getattr(self, f'{option}_bounds', [])
bounds_word = getattr(self, f'{option}_bounds_word', [])
confidences = getattr(self, f'{option}_confidences', [])
draw = ImageDraw.Draw(self.image)
width, height = self.image.size
if min([width, height]) > 4000:
line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level
line_width_thin = 1
else:
line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level
line_width_thin = 1 #int((width + height) / 2 * 0.001)
for bound in bounds_word:
draw.polygon(
[
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
],
outline=OCRGoogle.BBOX_COLOR,
width=line_width_thin
)
# Draw a line segment at the bottom of each handwritten character
for bound, confidence in zip(bounds, confidences):
color = OCRGoogle.confidence_to_color(confidence)
# Use the bottom two vertices of the bounding box for the line
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)
return self.image
def detect_text(self):
with io.open(self.path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = self.client.document_text_detection(image=image)
texts = response.text_annotations
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
bounds = []
bounds_word = []
text_to_box_mapping = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.normal_cleaned_text = texts[0].description if texts else ''
self.normal_organized_text = organized_text
self.normal_bounds = bounds
self.normal_bounds_word = bounds_word
self.normal_text_to_box_mapping = text_to_box_mapping
self.normal_bounds_flat = bounds_flat
# self.normal_height = median_heights #height_flat
self.normal_height = height_flat
self.normal_confidences = confidences
self.normal_characters = characters
def detect_handwritten_ocr(self):
with open(self.path, "rb") as image_file:
content = image_file.read()
image = vision_beta.Image(content=content)
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
response = self.client_beta.document_text_detection(image=image, image_context=image_context)
texts = response.text_annotations
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
bounds = []
bounds_word = []
bounds_flat = []
height_flat = []
confidences = []
characters = []
organized_text = ""
paragraph_count = 0
text_to_box_mapping = []
for text in texts[1:]:
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
map_dict = {
"vertices": vertices,
"text": text.description
}
text_to_box_mapping.append(map_dict)
for page in response.full_text_annotation.pages:
for block in page.blocks:
# paragraph_count += 1
# organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label
for paragraph in block.paragraphs:
avg_H_list = []
for word in paragraph.words:
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
# Calculate the width of the word and divide by the number of symbols
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
if num_symbols <= 3:
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
else:
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
X = word_length / num_symbols if num_symbols > 0 else 0
H = int(X+(Yo*0.1))
avg_H_list.append(H)
avg_H = int(mean(avg_H_list))
words_in_para = []
for word in paragraph.words:
# Get word-level bounding box
bound_word_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
]
}
bounds_word.append(bound_word_dict)
Y = max(vertex.y for vertex in word.bounding_box.vertices)
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
num_symbols = len(word.symbols)
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
current_x_position = word_x_start
characters_ind = []
for symbol in word.symbols:
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Create flat bounds with adjusted x position
bounds_flat_dict = {
"vertices": [
{"x": current_x_position, "y": Y},
{"x": current_x_position + symbol_width, "y": Y}
]
}
bounds_flat.append(bounds_flat_dict)
current_x_position += symbol_width
height_flat.append(avg_H)
confidences.append(round(symbol.confidence, 4))
characters_ind.append(symbol.text)
characters.append(symbol.text)
words_in_para.append(''.join(characters_ind))
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
organized_text += paragraph_text + ' ' #+ '\n'
# median_height = statistics.median(height_flat) if height_flat else 0
# median_heights = [median_height] * len(characters)
self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
self.hand_organized_text = organized_text
self.hand_bounds = bounds
self.hand_bounds_word = bounds_word
self.hand_bounds_flat = bounds_flat
self.hand_text_to_box_mapping = text_to_box_mapping
# self.hand_height = median_heights #height_flat
self.hand_height = height_flat
self.hand_confidences = confidences
self.hand_characters = characters
def process_image(self, do_create_OCR_helper_image, logger):
if self.OCR_option in ['normal', 'both']:
self.detect_text()
if self.OCR_option in ['hand', 'both']:
self.detect_handwritten_ocr()
if self.OCR_option not in ['normal', 'hand', 'both']:
self.OCR_option = 'both'
self.detect_text()
self.detect_handwritten_ocr()
### Optionally add trOCR to the self.OCR for additional context
self.OCR = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
if do_create_OCR_helper_image:
self.image = Image.open(self.path)
if self.OCR_option in ['normal', 'both']:
image_with_boxes_normal = self.draw_boxes('normal')
text_image_normal = self.render_text_on_black_image('normal')
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)
if self.OCR_option in ['hand', 'both']:
image_with_boxes_hand = self.draw_boxes('hand')
text_image_hand = self.render_text_on_black_image('hand')
self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)
if self.do_use_trOCR:
text_image_trOCR = self.render_text_on_black_image('trOCR')
### Merge final overlay image
### [original, normal bboxes, normal text]
if self.OCR_option in ['normal']:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
### [original, hand bboxes, hand text]
elif self.OCR_option in ['hand']:
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
### [original, normal bboxes, normal text, hand bboxes, hand text]
else:
self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
if self.do_use_trOCR:
self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)
else:
self.merged_image_normal = None
self.merged_image_hand = None
self.overlay_image = Image.open(self.path)
'''
BBOX_COLOR = "black" # green cyan
def render_text_on_black_image(image_path, handwritten_char_bounds_flat, handwritten_char_confidences, handwritten_char_heights, characters):
# Load the original image to get its dimensions
original_image = Image.open(image_path)
width, height = original_image.size
# Create a black image of the same size
black_image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(black_image)
# Loop through each character
for bound, confidence, char_height, character in zip(handwritten_char_bounds_flat, handwritten_char_confidences, handwritten_char_heights, characters):
# Determine the font size based on the height of the character
font_size = int(char_height)
font = ImageFont.load_default().font_variant(size=font_size)
# Color of the character
color = confidence_to_color(confidence)
# Position of the text (using the bottom-left corner of the bounding box)
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
# Draw the character
draw.text(position, character, fill=color, font=font)
return black_image
def merge_images(image1, image2):
# Assuming both images are of the same size
width, height = image1.size
merged_image = Image.new("RGB", (width * 2, height))
merged_image.paste(image1, (0, 0))
merged_image.paste(image2, (width, 0))
return merged_image
def draw_boxes(image, bounds, color):
if bounds:
draw = ImageDraw.Draw(image)
width, height = image.size
line_width = int((width + height) / 2 * 0.001) # This sets the line width as 0.5% of the average dimension
for bound in bounds:
draw.polygon(
[
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
],
outline=color,
width=line_width
)
return image
def detect_text(path):
client = vision.ImageAnnotatorClient()
with io.open(path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.document_text_detection(image=image)
texts = response.text_annotations
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
# Extract bounding boxes
bounds = []
text_to_box_mapping = {}
for text in texts[1:]: # Skip the first entry, as it represents the entire detected text
# Convert BoundingPoly to dictionary
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices
]
}
bounds.append(bound_dict)
text_to_box_mapping[str(bound_dict)] = text.description
if texts:
# cleaned_text = texts[0].description.replace("\n", " ").replace("\t", " ").replace("|", " ")
cleaned_text = texts[0].description
return cleaned_text, bounds, text_to_box_mapping
else:
return '', None, None
def confidence_to_color(confidence):
"""Convert confidence level to a color ranging from red (low confidence) to green (high confidence)."""
# Using HSL color space, where Hue varies from red to green
hue = (confidence - 0.5) * 120 / 0.5 # Scale confidence to range 0-120 (red to green in HSL)
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1) # Convert to RGB
return (int(r*255), int(g*255), int(b*255))
def overlay_boxes_on_image(path, typed_bounds, handwritten_char_bounds, handwritten_char_confidences, do_create_OCR_helper_image):
if do_create_OCR_helper_image:
image = Image.open(path)
draw = ImageDraw.Draw(image)
width, height = image.size
line_width = int((width + height) / 2 * 0.005) # Adjust line width for character level
# Draw boxes for typed text
for bound in typed_bounds:
draw.polygon(
[
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
],
outline=BBOX_COLOR,
width=1
)
# Draw a line segment at the bottom of each handwritten character
for bound, confidence in zip(handwritten_char_bounds, handwritten_char_confidences):
color = confidence_to_color(confidence)
# Use the bottom two vertices of the bounding box for the line
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width)
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width)
draw.line([bottom_left, bottom_right], fill=color, width=line_width)
text_image = render_text_on_black_image(path, handwritten_char_bounds, handwritten_char_confidences)
merged_image = merge_images(image, text_image) # Assuming 'overlayed_image' is the image with lines
return merged_image
else:
return Image.open(path)
def detect_handwritten_ocr(path):
"""Detects handwritten characters in a local image and returns their bounding boxes and confidence levels.
Args:
path: The path to the local file.
Returns:
A tuple of (text, bounding_boxes, confidences)
"""
client = vision_beta.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision_beta.Image(content=content)
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
response = client.document_text_detection(image=image, image_context=image_context)
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
bounds = []
bounds_flat = []
height_flat = []
confidences = []
character = []
for page in response.full_text_annotation.pages:
for block in page.blocks:
for paragraph in block.paragraphs:
for word in paragraph.words:
# Get the bottom Y-location (max Y) for the whole word
Y = max(vertex.y for vertex in word.bounding_box.vertices)
# Get the height of the word's bounding box
H = Y - min(vertex.y for vertex in word.bounding_box.vertices)
for symbol in word.symbols:
# Collecting bounding box for each symbol
bound_dict = {
"vertices": [
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
]
}
bounds.append(bound_dict)
# Bounds with same bottom y height
bounds_flat_dict = {
"vertices": [
{"x": vertex.x, "y": Y} for vertex in symbol.bounding_box.vertices
]
}
bounds_flat.append(bounds_flat_dict)
# Add the word's height
height_flat.append(H)
# Collecting confidence for each symbol
symbol_confidence = round(symbol.confidence, 4)
confidences.append(symbol_confidence)
character.append(symbol.text)
cleaned_text = response.full_text_annotation.text
return cleaned_text, bounds, bounds_flat, height_flat, confidences, character
def process_image(path, do_create_OCR_helper_image):
typed_text, typed_bounds, _ = detect_text(path)
handwritten_text, handwritten_bounds, _ = detect_handwritten_ocr(path)
overlayed_image = overlay_boxes_on_image(path, typed_bounds, handwritten_bounds, do_create_OCR_helper_image)
return typed_text, handwritten_text, overlayed_image
'''
# ''' Google Vision'''
# def detect_text(path):
# """Detects text in the file located in the local filesystem."""
# client = vision.ImageAnnotatorClient()
# with io.open(path, 'rb') as image_file:
# content = image_file.read()
# image = vision.Image(content=content)
# response = client.document_text_detection(image=image)
# texts = response.text_annotations
# if response.error.message:
# raise Exception(
# '{}\nFor more info on error messages, check: '
# 'https://cloud.google.com/apis/design/errors'.format(
# response.error.message))
# return texts[0].description if texts else ''