VoucherVision / vouchervision /prompt_catalog.py
phyloforfun's picture
updates
567930d
raw
history blame
6.72 kB
from dataclasses import dataclass
from langchain_core.pydantic_v1 import Field, create_model
import yaml, json, os, shutil
@dataclass
class PromptCatalog:
domain_knowledge_example: str = ""
similarity: str = ""
OCR: str = ""
n_fields: int = 0
#############################################################################################
#############################################################################################
#############################################################################################
#############################################################################################
# These are for dynamically creating your own prompts with n-columns
def prompt_SLTP(self, rules_config_path, OCR=None, is_palm=False):
self.OCR = self.remove_colons_and_double_apostrophes(OCR)
self.rules_config_path = rules_config_path
self.rules_config = self.load_rules_config()
self.instructions = self.rules_config['instructions']
self.json_formatting_instructions = self.rules_config['json_formatting_instructions']
self.rules_list = self.rules_config['rules']
self.n_fields = len(self.rules_config['rules'])
# Set the rules for processing OCR into JSON format
self.rules = self.create_rules(is_palm)
self.structure, self.dictionary_structure = self.create_structure(is_palm)
''' between instructions and json_formatting_instructions. Made the prompt too long. Better performance without it
The unstructured OCR text is:
{self.OCR}
'''
if is_palm:
prompt = f"""Please help me complete this text parsing task given the following rules and unstructured OCR text. Your task is to refactor the OCR text into a structured JSON dictionary that matches the structure specified in the following rules. Please follow the rules strictly.
The rules are:
{self.instructions}
{self.json_formatting_instructions}
This is the JSON template that includes instructions for each key:
{self.rules}
The unstructured OCR text is:
{self.OCR}
Please populate the following JSON dictionary based on the rules and the unformatted OCR text:
{self.dictionary_structure}
{self.dictionary_structure}
{self.dictionary_structure}
"""
else:
prompt = f"""Please help me complete this text parsing task given the following rules and unstructured OCR text. Your task is to refactor the OCR text into a structured JSON dictionary that matches the structure specified in the following rules. Please follow the rules strictly.
The rules are:
{self.instructions}
{self.json_formatting_instructions}
This is the JSON template that includes instructions for each key:
{self.rules}
The unstructured OCR text is:
{self.OCR}
Please populate the following JSON dictionary based on the rules and the unformatted OCR text:
{self.dictionary_structure}
"""
# xlsx_headers = self.generate_xlsx_headers(is_palm)
# return prompt, self.PromptJSONModel, self.n_fields, xlsx_headers
# print(prompt)
return prompt, self.dictionary_structure
def remove_colons_and_double_apostrophes(self, text):
return text.replace(":", "").replace("\"", "")
def copy_prompt_template_to_new_dir(self, new_directory_path, rules_config_path):
# Ensure the target directory exists, create it if it doesn't
if not os.path.exists(new_directory_path):
os.makedirs(new_directory_path)
# Define the path for the new file location
new_file_path = os.path.join(new_directory_path, os.path.basename(rules_config_path))
# Copy the file to the new location
try:
shutil.copy(rules_config_path, new_file_path)
print(f"Prompt [{os.path.basename(rules_config_path)}] copied successfully to {new_file_path}")
except Exception as exc:
print(f"Error copying [{os.path.basename(rules_config_path)}] file: {exc}")
def load_rules_config(self):
with open(self.rules_config_path, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
return None
def create_rules(self, is_palm=False):
dictionary_structure = {key: value for key, value in self.rules_list.items()}
# Convert the structure to a JSON string without indentation
structure_json_str = json.dumps(dictionary_structure, sort_keys=False)
return structure_json_str
def create_structure(self, is_palm=False):
# # Create fields for the Pydantic model dynamically
# fields = {key: (str, Field(default=value, description=value)) for key, value in self.rules_list.items()}
# # Dynamically create the Pydantic model
# DynamicJSONParsingModel = create_model('SLTPvA', **fields)
# DynamicJSONParsingModel_use = DynamicJSONParsingModel()
# # Define the structure for the "Dictionary" section
# dictionary_fields = {key: (str, Field(default='', description="")) for key in self.rules_list.keys()}
# # Dynamically create the "Dictionary" Pydantic model
# PromptJSONModel = create_model('PromptJSONModel', **dictionary_fields)
# # Convert the model to JSON string (for demonstration)
# dictionary_structure = PromptJSONModel().dict()
# structure_json_str = json.dumps(dictionary_structure, sort_keys=False, indent=4)
# Directly create the dictionary structure with empty strings as default values
dictionary_structure = {key: '' for key in self.rules_list.keys()}
# Convert the dictionary to JSON string for demonstration if needed
structure_json_str = json.dumps(dictionary_structure, sort_keys=False, indent=4)
# print(structure_json_str)
# print(dictionary_structure)
return structure_json_str, dictionary_structure
def generate_xlsx_headers(self, is_palm):
# Extract headers from the 'Dictionary' keys in the JSON template rules
if is_palm:
xlsx_headers = list(self.rules_list.keys())
return xlsx_headers
else:
xlsx_headers = list(self.rules_list.keys())
return xlsx_headers