Spaces:
Runtime error
Runtime error
phuochungus
commited on
Commit
•
42a588a
0
Parent(s):
save change
Browse files- packages/rag-redis/LICENSE +21 -0
- packages/rag-redis/README.md +94 -0
- packages/rag-redis/ingest.py +43 -0
- packages/rag-redis/poetry.lock +0 -0
- packages/rag-redis/pyproject.toml +53 -0
- packages/rag-redis/rag_redis.ipynb +88 -0
- packages/rag-redis/rag_redis/__init__.py +3 -0
- packages/rag-redis/rag_redis/chain.py +65 -0
- packages/rag-redis/rag_redis/config.py +76 -0
- packages/rag-redis/rag_redis/schema.yml +23 -0
packages/rag-redis/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 LangChain, Inc.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
packages/rag-redis/README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# rag-redis
|
3 |
+
|
4 |
+
This template performs RAG using Redis (vector database) and OpenAI (LLM) on financial 10k filings docs for Nike.
|
5 |
+
|
6 |
+
It relies on the sentence transformer `all-MiniLM-L6-v2` for embedding chunks of the pdf and user questions.
|
7 |
+
|
8 |
+
## Environment Setup
|
9 |
+
|
10 |
+
Set the `OPENAI_API_KEY` environment variable to access the [OpenAI](https://platform.openai.com) models:
|
11 |
+
|
12 |
+
```bash
|
13 |
+
export OPENAI_API_KEY= <YOUR OPENAI API KEY>
|
14 |
+
```
|
15 |
+
|
16 |
+
Set the following [Redis](https://redis.com/try-free) environment variables:
|
17 |
+
|
18 |
+
```bash
|
19 |
+
export REDIS_HOST = <YOUR REDIS HOST>
|
20 |
+
export REDIS_PORT = <YOUR REDIS PORT>
|
21 |
+
export REDIS_USER = <YOUR REDIS USER NAME>
|
22 |
+
export REDIS_PASSWORD = <YOUR REDIS PASSWORD>
|
23 |
+
```
|
24 |
+
|
25 |
+
## Supported Settings
|
26 |
+
We use a variety of environment variables to configure this application
|
27 |
+
|
28 |
+
| Environment Variable | Description | Default Value |
|
29 |
+
|----------------------|-----------------------------------|---------------|
|
30 |
+
| `DEBUG` | Enable or disable Langchain debugging logs | True |
|
31 |
+
| `REDIS_HOST` | Hostname for the Redis server | "localhost" |
|
32 |
+
| `REDIS_PORT` | Port for the Redis server | 6379 |
|
33 |
+
| `REDIS_USER` | User for the Redis server | "" |
|
34 |
+
| `REDIS_PASSWORD` | Password for the Redis server | "" |
|
35 |
+
| `REDIS_URL` | Full URL for connecting to Redis | `None`, Constructed from user, password, host, and port if not provided |
|
36 |
+
| `INDEX_NAME` | Name of the vector index | "rag-redis" |
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
To use this package, you should first have the LangChain CLI and Pydantic installed in a Python virtual environment:
|
41 |
+
|
42 |
+
```shell
|
43 |
+
pip install -U langchain-cli pydantic==1.10.13
|
44 |
+
```
|
45 |
+
|
46 |
+
To create a new LangChain project and install this as the only package, you can do:
|
47 |
+
|
48 |
+
```shell
|
49 |
+
langchain app new my-app --package rag-redis
|
50 |
+
```
|
51 |
+
|
52 |
+
If you want to add this to an existing project, you can just run:
|
53 |
+
```shell
|
54 |
+
langchain app add rag-redis
|
55 |
+
```
|
56 |
+
|
57 |
+
And add the following code snippet to your `app/server.py` file:
|
58 |
+
```python
|
59 |
+
from rag_redis.chain import chain as rag_redis_chain
|
60 |
+
|
61 |
+
add_routes(app, rag_redis_chain, path="/rag-redis")
|
62 |
+
```
|
63 |
+
|
64 |
+
(Optional) Let's now configure LangSmith.
|
65 |
+
LangSmith will help us trace, monitor and debug LangChain applications.
|
66 |
+
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
67 |
+
If you don't have access, you can skip this section
|
68 |
+
|
69 |
+
|
70 |
+
```shell
|
71 |
+
export LANGCHAIN_TRACING_V2=true
|
72 |
+
export LANGCHAIN_API_KEY=<your-api-key>
|
73 |
+
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
74 |
+
```
|
75 |
+
|
76 |
+
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
77 |
+
|
78 |
+
```shell
|
79 |
+
langchain serve
|
80 |
+
```
|
81 |
+
|
82 |
+
This will start the FastAPI app with a server is running locally at
|
83 |
+
[http://localhost:8000](http://localhost:8000)
|
84 |
+
|
85 |
+
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
86 |
+
We can access the playground at [http://127.0.0.1:8000/rag-redis/playground](http://127.0.0.1:8000/rag-redis/playground)
|
87 |
+
|
88 |
+
We can access the template from code with:
|
89 |
+
|
90 |
+
```python
|
91 |
+
from langserve.client import RemoteRunnable
|
92 |
+
|
93 |
+
runnable = RemoteRunnable("http://localhost:8000/rag-redis")
|
94 |
+
```
|
packages/rag-redis/ingest.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.vectorstores import Redis
|
6 |
+
from rag_redis.config import INDEX_NAME, INDEX_SCHEMA, REDIS_URL
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
|
9 |
+
|
10 |
+
def ingest_documents():
|
11 |
+
"""
|
12 |
+
Ingest PDF to Redis from the data/ directory that
|
13 |
+
"""
|
14 |
+
# Load list of pdfs
|
15 |
+
data_path = "data/"
|
16 |
+
docs = [os.path.join(data_path, file) for file in os.listdir(data_path)]
|
17 |
+
|
18 |
+
print("Parsing docs", docs)
|
19 |
+
|
20 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
21 |
+
chunk_size=1500, chunk_overlap=100, add_start_index=True
|
22 |
+
)
|
23 |
+
chunks = []
|
24 |
+
for doc in docs:
|
25 |
+
loader = UnstructuredFileLoader(doc, mode="single", strategy="fast")
|
26 |
+
chunks.extend(loader.load_and_split(text_splitter))
|
27 |
+
|
28 |
+
print("Chunk 0:", chunks[0])
|
29 |
+
|
30 |
+
print("Done preprocessing. Created", len(chunks), "chunks of the original pdf")
|
31 |
+
|
32 |
+
rds = Redis.from_texts(
|
33 |
+
texts=[chunk.page_content for chunk in chunks],
|
34 |
+
metadatas=[chunk.metadata for chunk in chunks],
|
35 |
+
embedding=OpenAIEmbeddings(),
|
36 |
+
index_name=INDEX_NAME,
|
37 |
+
redis_url=REDIS_URL,
|
38 |
+
)
|
39 |
+
rds.write_schema(INDEX_SCHEMA)
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
ingest_documents()
|
packages/rag-redis/poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
packages/rag-redis/pyproject.toml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "rag-redis"
|
3 |
+
version = "0.0.1"
|
4 |
+
description = "Run a RAG app backed by OpenAI, HuggingFace, and Redis as a vector database"
|
5 |
+
authors = [
|
6 |
+
"Tyler Hutcherson <tyler.hutcherson@redis.com>",
|
7 |
+
"Sam Partee <sam.partee@redis.com>",
|
8 |
+
]
|
9 |
+
readme = "README.md"
|
10 |
+
|
11 |
+
[tool.poetry.dependencies]
|
12 |
+
python = ">=3.9,<3.13"
|
13 |
+
langchain = ">=0.0.325"
|
14 |
+
fastapi = "^0.104.0"
|
15 |
+
sse-starlette = "^1.6.5"
|
16 |
+
openai = "<2"
|
17 |
+
sentence-transformers = "2.2.2"
|
18 |
+
redis = "5.0.1"
|
19 |
+
tiktoken = "0.5.1"
|
20 |
+
pdf2image = "1.16.3"
|
21 |
+
|
22 |
+
[tool.poetry.dependencies.unstructured]
|
23 |
+
version = "^0.10.27"
|
24 |
+
extras = [
|
25 |
+
"pdf",
|
26 |
+
]
|
27 |
+
|
28 |
+
[tool.poetry.group.dev.dependencies]
|
29 |
+
poethepoet = "^0.24.1"
|
30 |
+
langchain-cli = ">=0.0.15"
|
31 |
+
|
32 |
+
[tool.langserve]
|
33 |
+
export_module = "rag_redis.chain"
|
34 |
+
export_attr = "chain"
|
35 |
+
|
36 |
+
[tool.templates-hub]
|
37 |
+
use-case = "rag"
|
38 |
+
author = "Redis"
|
39 |
+
integrations = ["OpenAI", "Redis", "HuggingFace"]
|
40 |
+
tags = ["vectordbs"]
|
41 |
+
|
42 |
+
[tool.poe.tasks.start]
|
43 |
+
cmd = "uvicorn langchain_cli.dev_scripts:create_demo_server --reload --port $port --host $host"
|
44 |
+
args = [
|
45 |
+
{ name = "port", help = "port to run on", default = "8000" },
|
46 |
+
{ name = "host", help = "host to run on", default = "127.0.0.1" },
|
47 |
+
]
|
48 |
+
|
49 |
+
[build-system]
|
50 |
+
requires = [
|
51 |
+
"poetry-core",
|
52 |
+
]
|
53 |
+
build-backend = "poetry.core.masonry.api"
|
packages/rag-redis/rag_redis.ipynb
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "681a5d1e",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Connect to RAG App\n",
|
9 |
+
"\n",
|
10 |
+
"Assuming you are already running this server:\n",
|
11 |
+
"```bash\n",
|
12 |
+
"langserve start\n",
|
13 |
+
"```"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 37,
|
19 |
+
"id": "d774be2a",
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stdout",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"Nike's revenue in 2023 was $51.2 billion. \n",
|
27 |
+
"\n",
|
28 |
+
"Source: 'data/nke-10k-2023.pdf', Start Index: '146100'\n"
|
29 |
+
]
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"from langserve.client import RemoteRunnable\n",
|
34 |
+
"\n",
|
35 |
+
"rag_redis = RemoteRunnable(\"http://localhost:8000/rag-redis\")\n",
|
36 |
+
"\n",
|
37 |
+
"print(rag_redis.invoke(\"What was Nike's revenue in 2023?\"))"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 43,
|
43 |
+
"id": "07ae0005",
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"name": "stdout",
|
48 |
+
"output_type": "stream",
|
49 |
+
"text": [
|
50 |
+
"As of May 31, 2023, Nike had approximately 83,700 employees worldwide. This information can be found in the first piece of context provided. (source: data/nke-10k-2023.pdf, start_index: 32532)\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"print(rag_redis.invoke(\"How many employees work at Nike?\"))"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"id": "4a6b9f00",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": []
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"metadata": {
|
68 |
+
"kernelspec": {
|
69 |
+
"display_name": "Python 3 (ipykernel)",
|
70 |
+
"language": "python",
|
71 |
+
"name": "python3"
|
72 |
+
},
|
73 |
+
"language_info": {
|
74 |
+
"codemirror_mode": {
|
75 |
+
"name": "ipython",
|
76 |
+
"version": 3
|
77 |
+
},
|
78 |
+
"file_extension": ".py",
|
79 |
+
"mimetype": "text/x-python",
|
80 |
+
"name": "python",
|
81 |
+
"nbconvert_exporter": "python",
|
82 |
+
"pygments_lexer": "ipython3",
|
83 |
+
"version": "3.10.6"
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"nbformat": 4,
|
87 |
+
"nbformat_minor": 5
|
88 |
+
}
|
packages/rag-redis/rag_redis/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
packages/rag-redis/rag_redis/chain.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chat_models import ChatOpenAI
|
2 |
+
from langchain.embeddings import OpenAIEmbeddings
|
3 |
+
from langchain.prompts import ChatPromptTemplate
|
4 |
+
from langchain.pydantic_v1 import BaseModel
|
5 |
+
from langchain.schema.output_parser import StrOutputParser
|
6 |
+
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
7 |
+
from langchain.vectorstores import Redis
|
8 |
+
|
9 |
+
from rag_redis.config import (
|
10 |
+
INDEX_NAME,
|
11 |
+
INDEX_SCHEMA,
|
12 |
+
REDIS_URL,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
# Make this look better in the docs.
|
17 |
+
class Question(BaseModel):
|
18 |
+
__root__: str
|
19 |
+
|
20 |
+
|
21 |
+
# Init Embeddings
|
22 |
+
embedder = OpenAIEmbeddings()
|
23 |
+
|
24 |
+
# Connect to pre-loaded vectorstore
|
25 |
+
# run the ingest.py script to populate this
|
26 |
+
vectorstore = Redis.from_existing_index(
|
27 |
+
embedding=embedder, index_name=INDEX_NAME, schema=INDEX_SCHEMA, redis_url=REDIS_URL
|
28 |
+
)
|
29 |
+
retriever = vectorstore.as_retriever(search_type="mmr")
|
30 |
+
|
31 |
+
|
32 |
+
# Define our prompt
|
33 |
+
template = """
|
34 |
+
Use the following pieces of context from ApartmentManagementDocument and
|
35 |
+
ProjectManagementDocument to answer the question. Do not make up an answer
|
36 |
+
if there is no context provided to help answer it. Answer the question in
|
37 |
+
the same language as the question is asked.
|
38 |
+
|
39 |
+
Context:
|
40 |
+
---------
|
41 |
+
{context}
|
42 |
+
|
43 |
+
---------
|
44 |
+
Question: {question}
|
45 |
+
---------
|
46 |
+
|
47 |
+
Answer:
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
prompt = ChatPromptTemplate.from_template(template)
|
52 |
+
|
53 |
+
# Cache
|
54 |
+
from langchain.cache import InMemoryCache
|
55 |
+
from langchain.globals import set_llm_cache
|
56 |
+
set_llm_cache(InMemoryCache())
|
57 |
+
|
58 |
+
# RAG Chain
|
59 |
+
model = ChatOpenAI(model_name="gpt-3.5-turbo")
|
60 |
+
chain = (
|
61 |
+
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
62 |
+
| prompt
|
63 |
+
| model
|
64 |
+
| StrOutputParser()
|
65 |
+
).with_types(input_type=Question)
|
packages/rag-redis/rag_redis/config.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
def get_boolean_env_var(var_name, default_value=False):
|
5 |
+
"""Retrieve the boolean value of an environment variable.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
var_name (str): The name of the environment variable to retrieve.
|
9 |
+
default_value (bool): The default value to return if the variable
|
10 |
+
is not found.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
bool: The value of the environment variable, interpreted as a boolean.
|
14 |
+
"""
|
15 |
+
true_values = {"true", "1", "t", "y", "yes"}
|
16 |
+
false_values = {"false", "0", "f", "n", "no"}
|
17 |
+
|
18 |
+
# Retrieve the environment variable's value
|
19 |
+
value = os.getenv(var_name, "").lower()
|
20 |
+
|
21 |
+
# Decide the boolean value based on the content of the string
|
22 |
+
if value in true_values:
|
23 |
+
return True
|
24 |
+
elif value in false_values:
|
25 |
+
return False
|
26 |
+
else:
|
27 |
+
return default_value
|
28 |
+
|
29 |
+
|
30 |
+
# Check for openai API key
|
31 |
+
if "OPENAI_API_KEY" not in os.environ:
|
32 |
+
raise Exception("Must provide an OPENAI_API_KEY as an env var.")
|
33 |
+
|
34 |
+
|
35 |
+
# Whether or not to enable langchain debugging
|
36 |
+
DEBUG = get_boolean_env_var("DEBUG", False)
|
37 |
+
# Set DEBUG env var to "true" if you wish to enable LC debugging module
|
38 |
+
if DEBUG:
|
39 |
+
import langchain
|
40 |
+
|
41 |
+
langchain.debug = True
|
42 |
+
|
43 |
+
|
44 |
+
# Redis Connection Information
|
45 |
+
REDIS_HOST = os.getenv("REDIS_HOST", "localhost")
|
46 |
+
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
|
47 |
+
|
48 |
+
|
49 |
+
def format_redis_conn_from_env():
|
50 |
+
redis_url = os.getenv("REDIS_URL", None)
|
51 |
+
if redis_url:
|
52 |
+
return redis_url
|
53 |
+
else:
|
54 |
+
using_ssl = get_boolean_env_var("REDIS_SSL", False)
|
55 |
+
start = "rediss://" if using_ssl else "redis://"
|
56 |
+
|
57 |
+
# if using RBAC
|
58 |
+
password = os.getenv("REDIS_PASSWORD", None)
|
59 |
+
username = os.getenv("REDIS_USERNAME", "default")
|
60 |
+
if password is not None:
|
61 |
+
start += f"{username}:{password}@"
|
62 |
+
|
63 |
+
return start + f"{REDIS_HOST}:{REDIS_PORT}"
|
64 |
+
|
65 |
+
|
66 |
+
REDIS_URL = format_redis_conn_from_env()
|
67 |
+
|
68 |
+
# Vector Index Configuration
|
69 |
+
INDEX_NAME = os.getenv("INDEX_NAME", "rag-redis")
|
70 |
+
|
71 |
+
# Embedding model
|
72 |
+
|
73 |
+
current_file_path = os.path.abspath(__file__)
|
74 |
+
parent_dir = os.path.dirname(current_file_path)
|
75 |
+
schema_path = os.path.join(parent_dir, "schema.yml")
|
76 |
+
INDEX_SCHEMA = schema_path
|
packages/rag-redis/rag_redis/schema.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numeric:
|
2 |
+
- name: start_index
|
3 |
+
no_index: false
|
4 |
+
sortable: false
|
5 |
+
text:
|
6 |
+
- name: source
|
7 |
+
no_index: false
|
8 |
+
no_stem: false
|
9 |
+
sortable: false
|
10 |
+
weight: 1
|
11 |
+
withsuffixtrie: false
|
12 |
+
- name: content
|
13 |
+
no_index: false
|
14 |
+
no_stem: false
|
15 |
+
sortable: false
|
16 |
+
weight: 1
|
17 |
+
withsuffixtrie: false
|
18 |
+
vector:
|
19 |
+
- algorithm: FLAT
|
20 |
+
datatype: FLOAT32
|
21 |
+
dims: 1536
|
22 |
+
distance_metric: COSINE
|
23 |
+
name: content_vector
|