Spaces:
Running
Running
| /* | |
| * Copyright (C) 2023, Inria | |
| * GRAPHDECO research group, https://team.inria.fr/graphdeco | |
| * All rights reserved. | |
| * | |
| * This software is free for non-commercial, research and evaluation use | |
| * under the terms of the LICENSE.md file. | |
| * | |
| * For inquiries contact george.drettakis@inria.fr | |
| */ | |
| #include "forward.h" | |
| #include "auxiliary.h" | |
| #include <cooperative_groups.h> | |
| #include <cooperative_groups/reduce.h> | |
| namespace cg = cooperative_groups; | |
| // Forward method for converting the input spherical harmonics | |
| // coefficients of each Gaussian to a simple RGB color. | |
| __device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped) | |
| { | |
| // The implementation is loosely based on code for | |
| // "Differentiable Point-Based Radiance Fields for | |
| // Efficient View Synthesis" by Zhang et al. (2022) | |
| glm::vec3 pos = means[idx]; | |
| glm::vec3 dir = pos - campos; | |
| dir = dir / glm::length(dir); | |
| glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs; | |
| glm::vec3 result = SH_C0 * sh[0]; | |
| if (deg > 0) | |
| { | |
| float x = dir.x; | |
| float y = dir.y; | |
| float z = dir.z; | |
| result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3]; | |
| if (deg > 1) | |
| { | |
| float xx = x * x, yy = y * y, zz = z * z; | |
| float xy = x * y, yz = y * z, xz = x * z; | |
| result = result + | |
| SH_C2[0] * xy * sh[4] + | |
| SH_C2[1] * yz * sh[5] + | |
| SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] + | |
| SH_C2[3] * xz * sh[7] + | |
| SH_C2[4] * (xx - yy) * sh[8]; | |
| if (deg > 2) | |
| { | |
| result = result + | |
| SH_C3[0] * y * (3.0f * xx - yy) * sh[9] + | |
| SH_C3[1] * xy * z * sh[10] + | |
| SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] + | |
| SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] + | |
| SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] + | |
| SH_C3[5] * z * (xx - yy) * sh[14] + | |
| SH_C3[6] * x * (xx - 3.0f * yy) * sh[15]; | |
| } | |
| } | |
| } | |
| result += 0.5f; | |
| // RGB colors are clamped to positive values. If values are | |
| // clamped, we need to keep track of this for the backward pass. | |
| clamped[3 * idx + 0] = (result.x < 0); | |
| clamped[3 * idx + 1] = (result.y < 0); | |
| clamped[3 * idx + 2] = (result.z < 0); | |
| return glm::max(result, 0.0f); | |
| } | |
| // Forward version of 2D covariance matrix computation | |
| __device__ float3 computeCov2D(const float3& mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float* cov3D, const float* viewmatrix) | |
| { | |
| // The following models the steps outlined by equations 29 | |
| // and 31 in "EWA Splatting" (Zwicker et al., 2002). | |
| // Additionally considers aspect / scaling of viewport. | |
| // Transposes used to account for row-/column-major conventions. | |
| float3 t = transformPoint4x3(mean, viewmatrix); | |
| const float limx = 1.3f * tan_fovx; | |
| const float limy = 1.3f * tan_fovy; | |
| const float txtz = t.x / t.z; | |
| const float tytz = t.y / t.z; | |
| t.x = min(limx, max(-limx, txtz)) * t.z; | |
| t.y = min(limy, max(-limy, tytz)) * t.z; | |
| glm::mat3 J = glm::mat3( | |
| focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z), | |
| 0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z), | |
| 0, 0, 0); | |
| glm::mat3 W = glm::mat3( | |
| viewmatrix[0], viewmatrix[4], viewmatrix[8], | |
| viewmatrix[1], viewmatrix[5], viewmatrix[9], | |
| viewmatrix[2], viewmatrix[6], viewmatrix[10]); | |
| glm::mat3 T = W * J; | |
| glm::mat3 Vrk = glm::mat3( | |
| cov3D[0], cov3D[1], cov3D[2], | |
| cov3D[1], cov3D[3], cov3D[4], | |
| cov3D[2], cov3D[4], cov3D[5]); | |
| glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T; | |
| // Apply low-pass filter: every Gaussian should be at least | |
| // one pixel wide/high. Discard 3rd row and column. | |
| cov[0][0] += 0.3f; | |
| cov[1][1] += 0.3f; | |
| return { float(cov[0][0]), float(cov[0][1]), float(cov[1][1]) }; | |
| } | |
| // Forward method for converting scale and rotation properties of each | |
| // Gaussian to a 3D covariance matrix in world space. Also takes care | |
| // of quaternion normalization. | |
| __device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float* cov3D) | |
| { | |
| // Create scaling matrix | |
| glm::mat3 S = glm::mat3(1.0f); | |
| S[0][0] = mod * scale.x; | |
| S[1][1] = mod * scale.y; | |
| S[2][2] = mod * scale.z; | |
| // Normalize quaternion to get valid rotation | |
| glm::vec4 q = rot;// / glm::length(rot); | |
| float r = q.x; | |
| float x = q.y; | |
| float y = q.z; | |
| float z = q.w; | |
| // Compute rotation matrix from quaternion | |
| glm::mat3 R = glm::mat3( | |
| 1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y), | |
| 2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x), | |
| 2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y) | |
| ); | |
| glm::mat3 M = S * R; | |
| // Compute 3D world covariance matrix Sigma | |
| glm::mat3 Sigma = glm::transpose(M) * M; | |
| // Covariance is symmetric, only store upper right | |
| cov3D[0] = Sigma[0][0]; | |
| cov3D[1] = Sigma[0][1]; | |
| cov3D[2] = Sigma[0][2]; | |
| cov3D[3] = Sigma[1][1]; | |
| cov3D[4] = Sigma[1][2]; | |
| cov3D[5] = Sigma[2][2]; | |
| } | |
| // Perform initial steps for each Gaussian prior to rasterization. | |
| template<int C> | |
| __global__ void preprocessCUDA(int P, int D, int M, | |
| const float* orig_points, | |
| const glm::vec3* scales, | |
| const float scale_modifier, | |
| const glm::vec4* rotations, | |
| const float* opacities, | |
| const float* shs, | |
| bool* clamped, | |
| const float* cov3D_precomp, | |
| const float* colors_precomp, | |
| const float* viewmatrix, | |
| const float* projmatrix, | |
| const glm::vec3* cam_pos, | |
| const int W, int H, | |
| const float tan_fovx, float tan_fovy, | |
| const float focal_x, float focal_y, | |
| int* radii, | |
| float2* points_xy_image, | |
| float* depths, | |
| float* cov3Ds, | |
| float* rgb, | |
| float4* conic_opacity, | |
| const dim3 grid, | |
| uint32_t* tiles_touched, | |
| bool prefiltered) | |
| { | |
| auto idx = cg::this_grid().thread_rank(); | |
| if (idx >= P) | |
| return; | |
| // Initialize radius and touched tiles to 0. If this isn't changed, | |
| // this Gaussian will not be processed further. | |
| radii[idx] = 0; | |
| tiles_touched[idx] = 0; | |
| // Perform near culling, quit if outside. | |
| float3 p_view; | |
| if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view)) | |
| return; | |
| // Transform point by projecting | |
| float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] }; | |
| float4 p_hom = transformPoint4x4(p_orig, projmatrix); | |
| float p_w = 1.0f / (p_hom.w + 0.0000001f); | |
| float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w }; | |
| // If 3D covariance matrix is precomputed, use it, otherwise compute | |
| // from scaling and rotation parameters. | |
| const float* cov3D; | |
| if (cov3D_precomp != nullptr) | |
| { | |
| cov3D = cov3D_precomp + idx * 6; | |
| } | |
| else | |
| { | |
| computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6); | |
| cov3D = cov3Ds + idx * 6; | |
| } | |
| // Compute 2D screen-space covariance matrix | |
| float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix); | |
| // Invert covariance (EWA algorithm) | |
| float det = (cov.x * cov.z - cov.y * cov.y); | |
| if (det == 0.0f) | |
| return; | |
| float det_inv = 1.f / det; | |
| float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv }; | |
| // Compute extent in screen space (by finding eigenvalues of | |
| // 2D covariance matrix). Use extent to compute a bounding rectangle | |
| // of screen-space tiles that this Gaussian overlaps with. Quit if | |
| // rectangle covers 0 tiles. | |
| float mid = 0.5f * (cov.x + cov.z); | |
| float lambda1 = mid + sqrt(max(0.1f, mid * mid - det)); | |
| float lambda2 = mid - sqrt(max(0.1f, mid * mid - det)); | |
| float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2))); | |
| float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) }; | |
| uint2 rect_min, rect_max; | |
| getRect(point_image, my_radius, rect_min, rect_max, grid); | |
| if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0) | |
| return; | |
| // If colors have been precomputed, use them, otherwise convert | |
| // spherical harmonics coefficients to RGB color. | |
| if (colors_precomp == nullptr) | |
| { | |
| glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped); | |
| rgb[idx * C + 0] = result.x; | |
| rgb[idx * C + 1] = result.y; | |
| rgb[idx * C + 2] = result.z; | |
| } | |
| // Store some useful helper data for the next steps. | |
| depths[idx] = p_view.z; | |
| radii[idx] = my_radius; | |
| points_xy_image[idx] = point_image; | |
| // Inverse 2D covariance and opacity neatly pack into one float4 | |
| conic_opacity[idx] = { conic.x, conic.y, conic.z, opacities[idx] }; | |
| tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x); | |
| } | |
| // Main rasterization method. Collaboratively works on one tile per | |
| // block, each thread treats one pixel. Alternates between fetching | |
| // and rasterizing data. | |
| template <uint32_t CHANNELS> | |
| __global__ void __launch_bounds__(BLOCK_X * BLOCK_Y) | |
| renderCUDA( | |
| const uint2* __restrict__ ranges, | |
| const uint32_t* __restrict__ point_list, | |
| int W, int H, | |
| const float2* __restrict__ points_xy_image, | |
| const float* __restrict__ features, | |
| const float4* __restrict__ conic_opacity, | |
| float* __restrict__ final_T, | |
| uint32_t* __restrict__ n_contrib, | |
| const float* __restrict__ bg_color, | |
| float* __restrict__ out_color) | |
| { | |
| // Identify current tile and associated min/max pixel range. | |
| auto block = cg::this_thread_block(); | |
| uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; | |
| uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y }; | |
| uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) }; | |
| uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y }; | |
| uint32_t pix_id = W * pix.y + pix.x; | |
| float2 pixf = { (float)pix.x, (float)pix.y }; | |
| // Check if this thread is associated with a valid pixel or outside. | |
| bool inside = pix.x < W&& pix.y < H; | |
| // Done threads can help with fetching, but don't rasterize | |
| bool done = !inside; | |
| // Load start/end range of IDs to process in bit sorted list. | |
| uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; | |
| const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); | |
| int toDo = range.y - range.x; | |
| // Allocate storage for batches of collectively fetched data. | |
| __shared__ int collected_id[BLOCK_SIZE]; | |
| __shared__ float2 collected_xy[BLOCK_SIZE]; | |
| __shared__ float4 collected_conic_opacity[BLOCK_SIZE]; | |
| // Initialize helper variables | |
| float T = 1.0f; | |
| uint32_t contributor = 0; | |
| uint32_t last_contributor = 0; | |
| float C[CHANNELS] = { 0 }; | |
| // Iterate over batches until all done or range is complete | |
| for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) | |
| { | |
| // End if entire block votes that it is done rasterizing | |
| int num_done = __syncthreads_count(done); | |
| if (num_done == BLOCK_SIZE) | |
| break; | |
| // Collectively fetch per-Gaussian data from global to shared | |
| int progress = i * BLOCK_SIZE + block.thread_rank(); | |
| if (range.x + progress < range.y) | |
| { | |
| int coll_id = point_list[range.x + progress]; | |
| collected_id[block.thread_rank()] = coll_id; | |
| collected_xy[block.thread_rank()] = points_xy_image[coll_id]; | |
| collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id]; | |
| } | |
| block.sync(); | |
| // Iterate over current batch | |
| for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) | |
| { | |
| // Keep track of current position in range | |
| contributor++; | |
| // Resample using conic matrix (cf. "Surface | |
| // Splatting" by Zwicker et al., 2001) | |
| float2 xy = collected_xy[j]; | |
| float2 d = { xy.x - pixf.x, xy.y - pixf.y }; | |
| float4 con_o = collected_conic_opacity[j]; | |
| float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y; | |
| if (power > 0.0f) | |
| continue; | |
| // Eq. (2) from 3D Gaussian splatting paper. | |
| // Obtain alpha by multiplying with Gaussian opacity | |
| // and its exponential falloff from mean. | |
| // Avoid numerical instabilities (see paper appendix). | |
| float alpha = min(0.99f, con_o.w * exp(power)); | |
| if (alpha < 1.0f / 255.0f) | |
| continue; | |
| float test_T = T * (1 - alpha); | |
| if (test_T < 0.0001f) | |
| { | |
| done = true; | |
| continue; | |
| } | |
| // Eq. (3) from 3D Gaussian splatting paper. | |
| for (int ch = 0; ch < CHANNELS; ch++) | |
| C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T; | |
| T = test_T; | |
| // Keep track of last range entry to update this | |
| // pixel. | |
| last_contributor = contributor; | |
| } | |
| } | |
| // All threads that treat valid pixel write out their final | |
| // rendering data to the frame and auxiliary buffers. | |
| if (inside) | |
| { | |
| final_T[pix_id] = T; | |
| n_contrib[pix_id] = last_contributor; | |
| for (int ch = 0; ch < CHANNELS; ch++) | |
| out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch]; | |
| } | |
| } | |
| void FORWARD::render( | |
| const dim3 grid, dim3 block, | |
| const uint2* ranges, | |
| const uint32_t* point_list, | |
| int W, int H, | |
| const float2* means2D, | |
| const float* colors, | |
| const float4* conic_opacity, | |
| float* final_T, | |
| uint32_t* n_contrib, | |
| const float* bg_color, | |
| float* out_color) | |
| { | |
| renderCUDA<NUM_CHANNELS> << <grid, block >> > ( | |
| ranges, | |
| point_list, | |
| W, H, | |
| means2D, | |
| colors, | |
| conic_opacity, | |
| final_T, | |
| n_contrib, | |
| bg_color, | |
| out_color); | |
| } | |
| void FORWARD::preprocess(int P, int D, int M, | |
| const float* means3D, | |
| const glm::vec3* scales, | |
| const float scale_modifier, | |
| const glm::vec4* rotations, | |
| const float* opacities, | |
| const float* shs, | |
| bool* clamped, | |
| const float* cov3D_precomp, | |
| const float* colors_precomp, | |
| const float* viewmatrix, | |
| const float* projmatrix, | |
| const glm::vec3* cam_pos, | |
| const int W, int H, | |
| const float focal_x, float focal_y, | |
| const float tan_fovx, float tan_fovy, | |
| int* radii, | |
| float2* means2D, | |
| float* depths, | |
| float* cov3Ds, | |
| float* rgb, | |
| float4* conic_opacity, | |
| const dim3 grid, | |
| uint32_t* tiles_touched, | |
| bool prefiltered) | |
| { | |
| preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > ( | |
| P, D, M, | |
| means3D, | |
| scales, | |
| scale_modifier, | |
| rotations, | |
| opacities, | |
| shs, | |
| clamped, | |
| cov3D_precomp, | |
| colors_precomp, | |
| viewmatrix, | |
| projmatrix, | |
| cam_pos, | |
| W, H, | |
| tan_fovx, tan_fovy, | |
| focal_x, focal_y, | |
| radii, | |
| means2D, | |
| depths, | |
| cov3Ds, | |
| rgb, | |
| conic_opacity, | |
| grid, | |
| tiles_touched, | |
| prefiltered | |
| ); | |
| } |